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Abstract
We prove convergence rates of Stochastic Zeroth-order Gradient Descent (SZGD) algo-

rithms for Łojasiewicz functions. The SZGD algorithm iterates as

xt+1 = xt − ηt∇̂f(xt), t = 0, 1, 2, 3, · · · ,

where f is the objective function that satisfies the Łojasiewicz inequality with Łojasiewicz ex-
ponent θ, ηt is the step size (learning rate), and ∇̂f(xt) is the approximate gradient estimated
using zeroth-order information only. We show that, for smooth Łojasiewicz functions, the se-
quence {xt}t∈N generated by SZGD converges to a point x∞ almost surely, and x∞ is a critical
point of f . If θ ∈ (0, 1

2
], {f(xt) − f(x∞)}t∈N, {

∑∞
s=t ∥xs+1 − xs∥2}t∈N and {∥xt − x∞∥}t∈N

(∥ · ∥ is the Euclidean norm) converge to zero linearly in expectation. If θ ∈ ( 1
2
, 1), then

{f(xt) − f(x∞)}t∈N (and {
∑∞

s=t ∥xs+1 − xs∥2}t∈N) converges to zero at rate O
(
t

1
1−2θ

)
in

expectation; {∥xt − x∞∥}t∈N converges to zero at rate O
(
t

1−θ
1−2θ

)
in expectation. Our results

show that {f(xt)− f(x∞)}t∈N can converge faster than {∥xt − x∞∥}t∈N.
Also, we show that for Łojasiewicz functions with Łojasiewicz exponent θ ∈ ( 1

2
, 1), the

sequence {f(xt)−f(x∞)}t∈N generated by the proximal algorithm converges at rate O
(
t

1
1−2θ

)
.

This rate is faster than the convergence rate of {∥xt−x∞∥}t∈N previously obtained by Attouch
and Bolte. Our results for the proximal algorithm reiterate that {f(xt) − f(x∞)}t∈N can
converge faster than {∥xt − x∞∥}t∈N, regardless of whether the objective f is smooth or
nonsmooth.

1 Introduction
Zeroth order optimization is a central topic in optimization and related fields. Algorithms for
zeroth order optimization find important real-world applications, since often times in practice, we
cannot directly access the derivatives of the objective function. To optimize the function in such
scenarios, one can estimate the gradient/Hessian first and deploy first/second order algorithms with
the estimated derivatives. Previously, many authors have considered this problem. Yet stochastic
zeroth order methods for Łojasiewicz functions have not been carefully investigated (See Section
2 for more discussion).

Łojasiewicz functions are real-valued functions that satisfy the Łojasiewicz inequality [21]. The
Łojasiewicz inequality generalizes the Polyak–Łojasiewicz inequality [29], and is a special case of
the Kurdyka–Łojasiewicz (KL) inequality [17, 18]. Such functions may give rise to spiral gradient
flow even if smoothness and convexity are assumed [9]. Also, Łojasiewicz functions may not be
convex. The compatibility with nonconvexity has gained them increasing amount of attention,
due to the surge in nonconvex objectives from machine learning and deep learning. Indeed, the
Łojasiewicz inequality can well capture the local landscape of neural network losses, since some good
local approximators for neural network losses, including polymonials and semialgebraic functions,
locally satisfy the Łojasiewicz inequality.

Previously, the understanding of Łojasiewicz functions have been advanced by many researchers
[29, 21, 17, 18, 19, 5, 1, 23]. In their classic work, [1] proved the state-of-the-art convergence rate
for {∥xt − x∞∥}t, where {xt}t is the sequence generated by the proximal algorithm, x∞ is the
limit of {xt}t that is also a critical point of the objective f , and ∥ · ∥ denotes the Euclidean norm.

∗Correspondence to : wangtianyu@fudan.edu.cn
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Convergence Rates of SZGD

In this paper, we study the performance of gradient descent with estimated gradient for (smooth)
Łojasiewicz functions. In particular, we study algorithms governed by the following rule

xt+1 = xt − ηt∇̂fδt
Vt

(xt), t = 0, 1, 2, · · · , (1)

where f : Rn → R is the unknown objective function, ηt > 0 is the step size (learning rate), and
∇̂fδt

Vt
(xt) is the estimator of ∇f at xt defined as follows.

∇̂fδt
Vt

(x) :=
n

2δtk

k∑
i=1

(f(x+ δtvt,i)− f(x− δtvt,i))vt,i, ∀x ∈ Rn, (2)

where Vt = [vt,1,vt,2, · · · ,vt,k] is uniformly sampled from the Stiefel manifold St(n, k) := {X ∈
Rn×k : X⊤X = Ik}, and δt := 2−t is the finite difference granularity. Previously, the statistical
properties of (2) have been investigated by [11] (See Section 3). Throughout, we use Stochastic
Zeroth-order Gradient Descent (SZGD) to refer to the above update rule (1) with the estimator
(2).

In this paper, we prove the following results for SZGD. Let the objective function f satisfy
the Łojasiewicz inequality with exponent θ (Definition 2). Let {xt}t be the sequence generated by
SZGD. Then under Assumption 1,

• The sequence {xt}t converges to a limit x∞ almost surely. In addition, x∞ is a critical point of
f .

• If θ ∈ (0, 1
2 ], then there exists Q > 1 such that {Qt(f(xt)− f(x∞))}t converges to zero in expec-

tation. In other words, if θ ∈ (0, 1
2 ], {f(xt)− f(x∞)}t converges to zero linearly in expectation.

• If θ ∈ ( 12 , 1), {f(xt) − f(x∞)}t converges to zero at rate O
(
t

1
1−2θ

)
in expectation. This rate

is faster than the convergence rate of {∥xt − x∞∥}t previously obtained in [1], where {xt}t is
generated by the proximal algorithm.

Also, we prove the following convergence rate for {∥xt − x∞∥}t and {
∑∞

s=t ∥xs+1 − xs∥2}t.

• If θ ∈ (0, 1
2 ], then there exists Q > 1 such that {Qt

∑∞
s=t ∥xs+1 − xs∥2}t and {Qt∥xt − x∞∥}t

converges to zero in expectation. In other words, if θ ∈ (0, 1
2 ], {

∑∞
s=t ∥xs+1 − xs∥2}t and

{∥xt − x∞∥}t converges to zero linearly in expectation.

• If θ ∈ ( 12 , 1), then {
∑∞

s=t ∥xs+1−xs∥2}t converges to zero at rate O
(
t

1
1−2θ

)
in expectation, and

{∥xt − x∞∥}t converges to zero at rate O
(
t

1−θ
2θ−1

)
in expectation.

For {∥xt−x∞∥}t, the convergence rate of SZGD matches the convergence rate of the proximal
algorithm [1], for any θ ∈ ( 12 , 1). This means one does not need a proximal oracle to obtain the
state-of-the-art of convergence rate for {∥xt − x∞∥}t. More importantly, the above results imply
that for any fixed θ ∈ ( 12 , 1), {f(xt)− f(x∞)}t can converge much faster than {∥xt−x∞∥}t. Also,
we show that the Gradient Descent (GD) algorithm converges at the same rate as SZGD.

Convergence Rates of the Proximal Algorithm

We also provide convergence rates of {f(xt) − f(x∞)}t for the proximal algorithm. Let {xt}t be
the sequence generated by the proximal algorithm. In their classic work [1], Attouch and Bolte
showed that, when θ ∈ ( 12 , 1), {∥xt −x∞∥}t converges to zero at rate O

(
t

1−θ
1−2θ

)
. In this paper, we

also prove the following result.

• Let {xt}t be generated by the proximal algorithm. If θ ∈ ( 12 , 1), then {f(xt)−f(x∞)}t converges

to zero at rate O
(
t

1
1−2θ

)
. Note that this rate can be much faster than the convergence rate of

{∥xt − x∞∥}t previously obtained in [1], which is of order O
(
t

1−θ
1−2θ

)
.
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Remark 1 (Summary of contributions). We prove convergence rates of SZGD for Łojasiewicz
Functions. Our results generalize the recent work that studies SZGD for Polyak–Łojasiewicz func-
tions [16].

More importantly, our results show that, when the Łojasiewicz exponent θ ∈ ( 12 , 1), {f(xt) −
f(x∞)}t can converge much faster than {∥xt − x∞∥}t. This observation is true for both SZGD
and the proximal algorithm. In addition, this observation is true regardless of whether the objective
function f is smooth (f is L-smooth, see Definition 1) or nonsmooth (f is continuous but not
necessarily differentiable).

2 Related Works
Zeroth order optimization is a central scheme in many fields (e.g., [25, 8, 32]). Among many
zeroth order optimization mechanisms, a classic and prosperous line of works focuses on estimat-
ing gradient/Hessian using zeroth order information and use the estimated gradient/Hessian for
downstream optimization algorithms.

A classic line of related works is the Robbins–Monro–Kiefer–Wolfowitz-type algorithms [30,
15] from stochastic approximation. See (e.g., [20, 3]) for exposition. The Robbins–Monro and
Kiefer–Wolfowitz scheme has been used in stochastic optimization and related fields (e.g., [26, 35]).
In particular, [4] have shown that stochastic gradient descent algorithm either converges to a
stationary point or goes to infinity, almost surely. While the results of [4] is quite general, no
convergence rate is given. As an example of recent development, [35] showed that convergence
results for Robbins–Monro when the objective is nonconvex. While the study of Robbins–Monro
and Kiefer–Wolfowitz has spanned 70 years, stochastic zeroth order optimization has not come to
its modern form until early this century.

In recent decades, due to lack of direct access to gradients in real-world applications, zeroth
order optimization has attracted the attention of many researchers. In particular, [12] introduced
the single-point gradient estimator for the purpose of bandit learning. Afterwards, many modern
gradient/Hessian estimators have been introduced and subsequent zeroth order optimization algo-
rithms have been studied. To name a few, [10, 28] have studied zeroth order optimization algorithm
for convex objective and established in expectation convergence rates. [2] used the Stein’s identity
for Hessian estimators and combined this estimator with cubic regularized Newton’s method [27].
[34, 33] provided refined analysis of Hessian/gradient estimators over Riemannian manifolds. [24]
studied zeroth order optimization over Riemannian manifolds and proved in expectation conver-
gence rates. The above mentioned stochastic zeroth order optimization works focus in expectation
convergence rates. Probabilistically stronger results have also been established for stochastic op-
timization methods recently. For example, [22] provide high probability convergence rates for
composite optimization problems.

The study of Łojasiewicz functions forms an important cluster of related works. Łojasiewicz
functions satisfies the Łojasiewicz inequality with Łojasiewicz exponent θ [21]. An important spe-
cial case of the Łojasiewicz inequality is the Polyak–Łojasiewicz inequality [29], which corresponds
to the Łojasiewicz inequality with θ = 1

2 . In [17, 18], the Łojasiewicz inequality was generalized to
the Kurdyka–Łojasiewicz inequality. Subsequently, the geometric properties has been intensively
studied, along with convergence studies of optimization algorithms on Kurdyka–Łojasiewicz -type
functions [29, 21, 17, 18, 19, 5, 1, 23]. Yet no prior works focus on stochastic zeroth order methods
for Łojasiewicz functions.

Perhaps the single most related work is the recent work by [16]. In [16], in expectation con-
vergence rates are proved for Polyak–Łojasiewicz functions. Compared to [16]’s study of Polyak–
Łojasiewicz functions, our results are more general since we Łojasiewicz functions are more general
than Polyak–Łojasiewicz functions.
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3 Preliminaries

3.1 Gradient Estimation
Consider gradient estimation tasks in Rn. The gradient estimator we use is [11]:

∇̂fδ
V(x) :=

n

2δk

k∑
i=1

(f(x+ δvi)− f(x− δvi))vi, ∀x ∈ Rn, (3)

where [v1,v2, · · · ,vk] = V is uniformly sampled from the Stiefel manifold St(n, k) = {X ∈ Rn×k :
X⊤X = Ik}, and δ is the finite difference granularity. In practice, one can firstly generate a random
matrix U ∈ Rn×k of i.i.d. standard Gaussian ensemble. Then apply the Gram–Schmit process on
U to obtain the matrix V.

Definition 1. A function f : Rn → R is called L-smooth if it is continuously differentiable, and
∥∇f(x)−∇f(x′)∥ ≤ L∥x− x′∥, for all x,x′ ∈ Rn.

With the above description of smoothness, we can state theorem on statistical properties of the
estimator (3). These properties are in Theorems 1 and 2.

Theorem 1 ([12]). If f is L-smooth, then the gradient estimator ∇̂fδ
V satisfies

∥∥∥E [∇̂fδ
V(x)

]
−∇f(x)

∥∥∥ ≤
Lnδ
n+1 for all x ∈ Rn.

Theorem 2. If f is L-smooth, then variance of the gradient estimator for f (Eq. 3) satisfies

E
[∥∥∥∇̂fδ

V(x)− E
[
∇̂fδ

V(x)
]∥∥∥2]

≤
(n
k
− 1
)
∥∇f(x)∥2 + 4Lδ√

3

(
n2

k
− n

)
∥∇f(x)∥+ 4L2n2δ2

3k
,

for all x ∈ Rn.

The proof of Theorem 2 can be found in Section 7.

3.2 Łojasiewicz Functions
Łojasiewicz functions are functions that satisfies the Łojasiewicz inequality. We start with the
differentiable Łojasiewicz functions (Definition 2). A more general version of the Łojasiewicz
inequality [21], where gradient is replaced by subgradients, is discussed in Section 5.

Definition 2. A differentiable function is said to be a (differentiable) Łojasiewicz function with
Łojasiewicz exponent θ ∈ (0, 1) if for any x∗ with ∇f(x∗) = 0, there exist constants κ, µ > 0 such
that

|f(x)− f(x∗)|θ ≤ κ∥∇f(x)∥, ∀x with ∥x− x∗∥ ≤ µ. (4)

We call (4) Łojasiewicz inequality. Without loss of generality, we let κ = 1 to avoid clutter.

An important special case of the Łojasiewicz inequality is the Polyak–Łojasiewicz inequality
[29], which corresponds to a case of the Łojasiewicz exponent θ being 1

2 . Also, Łojasiewicz inequality
is an important special case of the Kurdyka–Łojasiewicz (KL) inequality [17, 18]. Roughly speaking,
the KL inequality does not assume differentiability, and replaces the left-hand-side of (4) with a
more general function (in f(x)). In its general form, the Łojasiewicz inequality does not require
the objective function to be differentiable. In such cases, gradient on the right-hand-side of (4) is
replaced with subgradient. We will discuss the subgradient version in Section 5.
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3.3 Conventions and Notations
Before proceeding to the main results, we put forward several conventions.

• We use lower case bold letters (e.g. xt,u) to refer to vectors, upper case bold letters (e.g., Pt,
Vt) to refer to matrices.

• We use C to denote non-stochastic constants that is independent of t, not necessarily referring
to the same value at each occurrence. Such constants C always appear in front δt – We will
only write Cδt, and terms other than δt will not be multiplied to C. Since δt decreases to zero
exponentially fast, we use such C to avoid notational clutter in front of exponentially small
terms.

• For any random variable (or collection of random variables) X, we use EX [·] to denote the
expectation with respect to X. We use Ft to denote the σ-algebra generated by all randomness
after arriving at xt, but before obtaining the estimator ∇̂fδt

Vt
(xt), and use Et[·] to denote the

expectation condition on Ft. Also, we use E [·] to denote the total expectation.

For Section 4, the objective function f satisfies Assumption 1.

Assumption 1. Throughout Section 4, the objective function f satisfies:

(i) f is L-smooth for some constant L > 0. (See Definition 1).

(ii) f is a (differentiable) Łojasiewicz function with Łojasiewicz exponent θ. (See Definition 2)

(iii) infx∈Rn f(x) > −∞.

(iv) All critical points of f are isolated points (of Rn).

(v) Let {xt}t be the sequence generated by the SZGD algorithm. We assume that there exists a
critical point x∗ such that ∥xt − x∗∥ ≤ µ for all t.

Many items in the above assumptions are assumed in the classic work [1]. See Assumption 2
for the set of assumptions previously employed in [1].

A final remark before proceeding to the main results is that we focus on stochastic zeroth-order
optimization with noiseless function evaluations. The algorithm is random, and the environment
is noiseless.

4 Convergence Analysis for SZGD
This section presents convergence analysis for the SZGD algorithm. Before proceeding, we first
summarize SZGD in Algorithm 1.

Algorithm 1 Stochastic Zeroth-order Gradient Descent (SZGD)

1: Input: Dimension n, Number of orthogonal Directions for the Estimators k. /* function f is
L-smooth. */

2: Pick x0 ∈ Rn and δ0 = 1. /* or δ0 ∈ (0, 1). */
3: Pick step size lower and upper bounds η−, η+ ∈ (0,∞).
4: for t = 0, 1, 2, · · · do
5: Sample Vt ∼ Unif(St(n, k)), and use the random directions in Vt to define ∇̂fδt

k (xt).
6: xt+1 = xt − ηt∇̂fδt

Vt
(xt). /* The learning rate ηt satisfies ηt ∈ [η−, η+] for all t. */

7: δt+1 = δt/2.
8: end for

The main convergence rate guarantee for SZGD is in Theorem 3.

Theorem 3. Instate Assumption 1. Let xt be a sequence generated by SZGD (Algorithm 1). Pick
step sizes ηt so that there exist η−, η+ ∈ (0,∞) such that η− ≤ ηt ≤ η+ for all t. Then {xt}
converges to a critical point x∞ almost surely. In addition, it holds that

5



(a) if θ ∈ (0, 1
2 ], −1 ≤

(
Lnη2

−
2k − η−

)
< 0 and −1 ≤

(
Lnη2

+

2k − η+

)
< 0, then there exists a

constant Q > 1 such that {Qt (f(xt)− f(x∞))}t converges to 0 in expectation.

(b) if θ ∈ ( 12 , 1) and η−, η+ ∈
(
0, 2k

Ln

)
, then it holds that, {f(xt)− f(x∞)}t converges to zero at

rate O
(
t

1
1−2θ

)
in expectation.

This theorem gives convergence rate of {f(xt)}t∈N. Similar convergence guarantees for {xt}t
can be found in Section 4.3.

The rest of this section is organized as follows. In Section 4.1, we show that Algorithm 1
converges almost surely. In particular, we show that the sequences {xt}t∈N generated by SZGD
converges to a critical point almost surely. In Section 4.2, we establish convergence rates for
{f(xt)}t associated with Algorithm 1. Then in Section 4.2, we establish convergence rates for
{xt}t.

4.1 Asymptotic Convergence
We will first show that {xt}t converges to a critical point almost surely. For simplicity, let

−B := max

{(
Lη2−n

2k
− η−

)
,

(
Lη2+n

2k
− η+

)}
. (5)

Proposition 1. Let Pt := VtV
⊤
t . Then it holds that

f(xt+1) ≤ f(xt)−B
n

k
∇f(xt)

⊤Pt∇f(xt) + Cδt.

In addition, we have Et [f(xt+1)] ≤ f(xt)−B∥∇f(xt)∥2 + Cδt.

Proof. Since f(x) is L-smooth (∇f(x) is L-Lipschitz), ∇2f(x) (the weak total derivative of ∇f(x))
is integrable. Let v ∈ Rn be an arbitrary unit vector. When restricted to any line along direction
v ∈ Rn, it holds that v⊤∇2f(x)v (the weak derivative of v⊤∇f(x) along direction v) has bounded
L∞-norm. This is due to the fact that Lipschitz functions on any closed interval [a, b] forms the
Sobolev space W 1,∞[a, b].

Next we look at the variance bound for the estimator. Without loss of generality, we let x = 0.
Bounds for other values of x can be similarly obtained.

Taylor’s expansion of f with integral form gives

f(δv) = f(0) + δv⊤∇f(0) +

∫ δ

0

(δ − t)v⊤∇2f(tv)v dt

Thus for any v ∈ Sn−1 and small δ,

1

2

(
f(δv)− f(−δv)

)
= δv⊤∇f(0) +

1

2

∫ δ

0

(δ − t)v⊤∇2f(tv)v dt− 1

2

∫ −δ

0

(−δ − t)v⊤∇2f(tv)v dt.
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Therefore,

∇̂fδt
Vt

(xt) =
n

2kδt

k∑
i=1

(f(xt + δtvt,i)− f(−xt − δtvt,i))vt,i

=
n

k

k∑
i=1

vt,iv
⊤
t,i∇f(xt) +

n

k

k∑
i=1

vt,i

∫ δt

0

(δt − t)v⊤
t,i∇2f(xt + tvt,i)vt,i dt

− n

2kδt

k∑
i=1

vt,i

∫ −δt

0

(−δt − t)v⊤
t,i∇2f(xt + tvt,i)vt,i dt

=
n

k

k∑
i=1

vt,iv
⊤
t,i∇f(xt) +

n

2kδt

k∑
i=1

vt,i

∫ δt

0

(δt − t)v⊤
t,i∇2f(xt + tvt,i)vt,i dt

− n

2kδt

k∑
i=1

vt,i

∫ −δt

0

(−δt − t)v⊤
t,i∇2f(xt + tvt,i)vt,i dt,

which implies

∇f(xt)
⊤∇̂fδt

Vt
(xt) =

n

k
∇f(xt)

⊤Pt∇f(xt) +O(Ln∥∇f(xt)∥δt),∥∥∥∇̂fδt
Vt

(xt)
∥∥∥2 =

n

k
∇f(xt)

⊤Pt∇f(xt) +O(Ln
(
∥∇f(xt)∥+ ∥∇f(xt)∥2

)
δt).

Since {xt}t is bounded and ∥∇f(xt)∥ is continuous (Assumption 2), we know O(Ln∥∇f(xt)∥δt) ≤
Cδt and O(Ln

(
∥∇f(xt)∥+ ∥∇f(xt)∥2

)
δt) ≤ Cδt.

Thus by L-smoothness of the f , we have

f(xt+1) ≤ f(xt) +∇f(xt)
⊤ (xt+1 − xt) +

L

2
∥xt+1 − xt∥2

= f(xt)− ηt∇f(xt)
⊤∇̂fδt

Vt
(xt) +

Lη2t
2

∥∇̂fδt
Vt

(xt)∥2

≤ f(xt)−B
n

k
∇f(xt)

⊤Pt∇f(xt) + Cδt.

Since Ft contains xt but not Vt, it holds that

Et [f(xt+1)] ≤ f(xt)−B
n

k
∇f(xt)

⊤Et [Pt]∇f(xt) + Cδt.

By Propositions 7 and 8, we know Et [Pt] =
k
nI. Combining this fact with the above equation

finishes the proof.

In Lemma 1, we show that {∥∇f(xt)∥}t∈N converges to zero.

Lemma 1. Instate Assumption 1. Let {xt}t be the sequence governed by Algorithm 1. Pick step
sizes ηt so that there exist η−, η+ ∈ (0,∞) such that η− ≤ ηt ≤ η+ for all t. Then {∥∇f(xt)∥}t∈N
converges to zero almost surely.

Proof. By Proposition 1, we know

f(xt+1) ≤ f(xt)−
n

k
B∇f(xt)

⊤Pt∇f(xt) + Cδt. (6)

Taking conditional expectation on both sides of the above inequality gives

E [f(xt+1)− f(xt)] ≤ −BE
[n
k
∇f(xt)

⊤Et [Pt]∇f(xt)
]
+ Cδt

= −BE
[
∥∇f(xt)∥2

]
+ Cδt.
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Suppose, in order to get a contradiction, that there exists α > 0 such that ∥∇f(xt)∥2 > α
infinitely often. Thus we have

E [f(xt)] ≤ E [f(x0)]−BE

[∑
s∈Xt

∥∇f(xs)∥2
]
+ Cδt, t ≥ T0,

where Xt = {0 ≤ s < t : ∥∇f(xs)∥2 > α}. The above inequality (6) gives

E [f(xt)] ≤ E [f(x0)]− αBNt + Cδt, t ≥ T0

for some {Nt}t ⊆ N such that lim
t→∞

Nt = ∞.
Taking limits on both sides of the above inequality gives

lim inf
t→∞

E [f(xt)] ≤ E [f(x0)] + lim inf
t→∞

(αBNt) + Cδt = −∞,

which leads to a contradiction to infx∈Rn f(x) > −∞ (Assumption 1).
By the above proof-by-contradiction argument, we have shown

P
(
∥∇f(xt)∥2 > α infinitely often

)
= 0, ∀α > 0.

Note that
{
limt→∞ ∥∇f(xt)∥2 = 0

}c
=
⋃

α>0{∥∇f(xt)∥2 > α infinitely often} =
⋃

α∈Q+
{∥∇f(xt)∥2 >

α infinitely often}, where we replace the union over an uncountable set with a union over a count-
able set.

Thus it holds that

1− P
(
lim
t→∞

∥∇f(xt)∥2 = 0
)
= P

 ⋃
α∈Q+

{∥∇f(xt)∥2 > α infinitely often}


≤
∑
b∈Q+

P
(
∥∇f(xt)∥2 > α infinitely often

)
= 0,

which concludes the proof.

As consequences of Lemma 1, we know that {xt}t∈N and {f(xt)}t∈N converge almost surely.

Lemma 2. Instate Assumption 1. Let {xt}t∈N be the sequence of Algorithm 1. Pick step sizes ηt
so that there exist η−, η+ ∈ (0,∞) such that η− ≤ ηt ≤ η+ for all t. Then {xt}t converges to a
bounded critical point of f almost surely. Let x∞ be the almost sure limit of {xt}t∈N. It holds that
lim
t→∞

f(xt) = f(x∞) almost surely.

Proof of Lemma 2. Let Vt ∈ St(n, k) be the random orthogonal frame at t.

Let R be an arbitrary realization of V1,V2, · · · such that {∥∇f(xt)∥}t∈N converges to
zero. (H0)

Next we restrict our attention to this realization R. Note that there is no randomness in {xt}t∈N
once this realization R is fixed.

Let u ∈ Rn be an arbitrary vector, and let zt := u⊤xt and φt := ηtu
⊤∇̂fδt

k (xt) for all t. With
this notation, we have zt+1 = zt −φt for all t. By Lemma 1, we know limt→∞ (zt+1 − zt) = 0. Let
Ku be the set of subsequential limits of {zt}t. Then Ku is closed and bounded (by Assumption 1).

Claim 1. The set Ku is connected for any unit vector u ∈ Rn.

Proof of Claim 1. Suppose, in order to get a contradiction, that Ku is not connected. (H)
Since Ku is closed and bounded, we know that, if Ku is disconnected, then there exists

a1, b1, a2, b2 ∈ (−∞,∞) such that

• [a1, b1] ∪ [a2, b2] ⊆ Ku with b1 < a2;
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• (b1, a2) ∩Ku = ∅.

For simplicity, let m := b1+a2

2 and ∆ := a2 − b1. Since b1 and a2 are limit points, we can find
subsequences {zi1j}j and {zi2j}j such that

1. zi1j ≤ m− ∆
4 ;

2. zi2j ≥ m+ ∆
4 ;

3. i1j < i2j for all j.

Since {xt+1 − xt}t converges to zero, we know that {zt+1 − zt}t converges to zero. By items 1,
2 and 3 above, we know that there exists {i3j}j such that i1j < i3j ≤ i2j and zi3j ∈ (m− ∆

4 ,m+ ∆
4 ] for

infinitely many j. Otherwise, there will be a contradiction to the fact that {zt+1 − zt}t converges
to zero. Then we know that {zt}t has a limit point in [m − ∆

4 ,m + ∆
4 ], since {zi3j}j has a limit

point in [m− ∆
4 ,m+ ∆

4 ]. This is a contradiction to (H).

By Claim 1, we know that the limit points of {xt}t∈N is connected. In this realization R, it
holds that that any limit point of {xt}t∈N is a critical point of f . By Assumption 2, critical points
of f are isolated. Thus we know that the limit points of {xt}t∈N must be a singleton. In other
words, the sequence {xt}t∈N converges to a critical point of f .

The above argument holds for an arbitrary realization R that satisfies (H0). By Lemma 1,
almost all realizations satisfy (H0). This finishes the proof.

Now that we have shown that {xt}t converges to a critical point almost surely. We state a
more convenient form of the Łojasiewicz inequality in the following proposition.

Proposition 2. Instate Assumption 1. Pick step sizes ηt so that there exist η−, η+ ∈ (0,∞) such
that η− ≤ ηt ≤ η+ for all t. Let x∞ be the almost sure limit of {xt}t∈N. Then it holds that, for all
t ≥ T0,

(f(xt)− f(x∞))2θ ≤ ∥∇f(xt)∥, almost surely.

Proof. Proposition 2 is a direct consequence of a.s. convergence of {xt}t (Lemma 2) and the
Łojasiewicz inequality.

4.2 Convergence Rate of {f(xt)}t∈N
In the previous subsection, we have proved asymptotic convergence results for the SZGD algorithm.
This section is devoted to convergence rate analysis of {f(xt)}t∈N. We first state Proposition 3
that holds true for large t.

Proposition 3. Instate Assumption 1. Let {xt}t∈N be the sequence generated by Algorithm 1.
Pick step sizes ηt so that there exist η−, η+ ∈ (0,∞) such that η− ≤ ηt ≤ η+ for all t.Let x∞ be
the almost sure limit of {xt}t∈N (Lemma 2).

If θ ∈ (0, 1
2 ], there exists T0 < ∞ such that

(i) f(xt)− f(x∞) ≤ 1 for all t ≥ T0.

If θ ∈ ( 12 , 1), there exist constants C0, T0 < ∞ such that

(ii) E [f(xt)− f(x∞)] ∈
(
0,
(

1
2θB

) 1
2θ−1

)
for all t ≥ T0

(iii) C0 > 1 and C0

2θ−1 t
2θ

1−2θ −BC2θ
0 t

2θ
1−2θ + Cδt ≤ 0 for all t ≥ T0;

(iv) E [f(xT0
)− f(x∞)] ≤ C0T

1
1−2θ

0 .
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Proof. We first prove item (i). When θ ∈ (0, 1
2 ], −z2θ

1○
≤ −min{1, z} for all z ∈ [0,∞).

Let X ⊆ N be a set of times where f(xs) − f(x∞) > 1 for s ∈ X . Suppose, in order to get a
contradiction, that |X | = ∞.

Clearly we have

lim
t→∞

f(xt+1) ≤ f(x0)−B
∑
s∈X

∇f(xs)
⊤Ps∇f(xs) + C

∞∑
s=0

δs.

Note that X and EVs:s∈X [limt→∞ f(xt+1)] are random variables contained in ∪∞
s=0Fs. Thus

taking expectation with respect to {Vs : s ∈ X} on both sides of the above inequality gives

EVs:s∈X

[
lim
t→∞

f(xt+1)
]
≤ f(x0) + C

∞∑
s=0

δs −B
∑
s∈X

EVs:s∈X

[
∇f(xs)

⊤Ps∇f(xs)
]

= f(x0) + C

∞∑
s=0

δs −B
∑
s∈X

∥∇f(xs)∥2

≤ f(x0) + C

∞∑
s=0

δs −B
∑
s∈X

(f(xt)− f(x∞))
2θ (by Proposition 2)

≤ f(x0) + C

∞∑
s=0

δs −B
∑
s∈X

min{1, f(xt)− f(x∞)} (by 1○)

≤ f(x0) + C

∞∑
s=0

δs −B|X |.

If there does not exist a T0 such that f(xt)− f(x∞) ≤ 1 for all t ≥ T0, then the above implies
that f(xt) goes to negative infinity. This is a contradiction to that f(xt) is bounded from below
(Assumption 2). This finishes the proof of item (i).

Item (ii) follows from Lemma 2. Next we prove items (iii) and (iv).
Recall B = −min

{(
Lη2

−n

2k − η−

)
,
(

Lη2
+n

2k − η+

)}
. Consider a T0 so that the following is satis-

fied for all t ≥ T0

Cδtt
2θ

2θ−1 ≤ 1

2θ − 1
. (7)

Next, since 2θ > 1, we can pick C ′
0 > 1 so that

C ′
0 + 1

2θ − 1
−B(C ′

0)
2θ ≤ 0. (8)

Thus, for t ≥ T0, it holds that

C ′
0

2θ − 1
−B(C ′

0)
2θ + Cδtt

2θ
2θ−1 ≤ C ′

0 + 1

2θ − 1
−B(C ′

0)
2θ ≤ 0. (by Eqs. 7 and 8)

By multiplying both sides of the above inequality by t
2θ

1−2θ , we find a C ′
0 satisfying (iii). In fact,

any constant larger than this C ′
0 satisfies this item.

Finally, we can find C ′′
0 satisfying item (iv), since E [f(xT0

)− f(x∞)] is absolutely bounded for
any given T0. Indeed, any constant larger than this C ′′

0 satisfies this item. We finish the proof by
taking C0 = max{C ′

0, C
′′
0 }.

By Propositions 3 and 2, (6) implies that, for t ≥ T0,

Et [f(xt+1)]− f(x∞) ≤ f(xt)− f(x∞)−B∥∇f(xt)∥2 + Cδt

≤ f(xt)− f(x∞)−B (f(xt)− f(x∞))
2θ

+ Cδt. (9)

The above inequality (9) is a stochastic relation for the stochastic sequence {f(xt)−f(x∞)}t∈N.
In what follows, we will study the convergence behavior of this sequence.

Now we are ready to prove Theorem 3.
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Proof of Theorem 3(a). Let T0 be the constant so that item (i) in Proposition 3 is true. By Eq.
(6), we have

EVt
[f(xt+1)]− f(x∞) ≤ f(xt)− f(x∞)−B∥∇f(xt)∥2 + Cδt

≤ f(xt)− f(x∞)−B (f(xt)− f(x∞))
2θ

+ Cδt (10)
≤ (1−B) (f(xt)− f(x∞)) + Cδt, (11)

where (10) uses Proposition 2 and the last inequality uses item (i) in Proposition 3. Taking total
expectation on both sides of (11) gives

E [f(xt+1)− f(x∞)] ≤ (1−B)E [f(xt)− f(x∞)] + Cδt

...

≤ (1−B)t−T0E [(f(xT0
)− f(x∞))] + C(1−B)t−T0 . (12)

Let Q ∈ (1, (1 − B)−1) and let Zt := Qt (f(xt)− f(x∞)). By the Cauchy–Schwarz inequality,
(12) gives

E [Zt+1] ≤ Qt(1−B)t−T0ZT0 + CQt(1−B)t−T0 .

We conclude the proof by noticing limt→∞ E [Zt+1] = 0.

Proof of Theorem 3(b). Let C0 and T0 be two constants so that items (ii), (iii) and (iv) in Propo-
sition 3 hold true.

Taking expectation on both sides of (9) gives, for all t ≥ T0,

E [f(xt+1)− f(x∞)] ≤ E [f(xt)− f(x∞)]−BE
[
(f(xt)− f(x∞))

2θ
]
+ Cδt

≤ E [f(xt)− f(x∞)]−BE [f(xt)− f(x∞)]
2θ

+ Cδt,

where the last inequality uses Jensen’s inequality.
For simplicity, write yt := E [f(xt)− f(x∞)] for all t. Next, we use induction to show that

yt ≤ C0t
1

1−2θ , ∀t ≥ T0. (13)

Suppose that yt ≤ C0t
1

1−2θ , which is true when t = T0 (item (iv) in Proposition 3). Then for
yt+1 we have

yt+1 ≤ yt −By2θt + Cδt ≤ C0t
1

1−2θ −BC2θ
0 t

2θ
1−2θ + Cδt, (14)

where second inequality uses item (ii) in Proposition 3 and that the function z 7→ z − Bz2θ is
strictly increasing when z ∈

(
0,
(

1
2θB

) 1
2θ−1

)
.

By applying Taylor’s theorem (mean value theorem) to the function h(w) = (t + w)
1

1−2θ , we
have h(1) = h(0) + h′(z) for some z ∈ [0, 1]. This gives

(t+ 1)
1

1−2θ = t
1

1−2θ +
1

1− 2θ
(t+ z)

2θ
1−2θ ≥ t

1
1−2θ +

1

1− 2θ
t

2θ
1−2θ , (15)

since z ∈ [0, 1]. Thus by (14), we have

yt+1 ≤ C0t
1

1−2θ −BC2θ
0 t

2θ
1−2θ + Cδt

≤ C0(t+ 1)
1

1−2θ + C0
1

2θ − 1
t

2θ
1−2θ −BC2θ

0 t
2θ

1−2θ + Cδt ≤ C0(t+ 1)
1

1−2θ ,

where the second inequality uses (15), and the last inequality uses (iii) in Proposition 3.
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4.3 Convergence Rate of {xt}t∈N
In the previous subsection, we have proved convergence rate of {f(xt)}t∈N. In this section, we
prove convergence rates for {∥xt − x∞∥}t∈N and {

∑∞
s=t ∥xs − xs+1∥2}t∈N.

Theorem 4. Instate Assumption 1. Let xt be a sequence generated by the SZGD algorithm, and
let x∞ be the almost sure limit of {xt}t. Pick step sizes ηt so that there exist η−, η+ ∈ (0,∞) such
that η− ≤ ηt ≤ η+ for all t. Then it holds that

(a) if θ ∈ (0, 1
2 ], −1 ≤

(
Lnη2

−
2k − η−

)
< 0 and −1 ≤

(
Lnη2

+

2k − η+

)
< 0, there exists a constant

Q > 1 such that {Qt
∑∞

s=t ∥xs+1 − xs∥2}t converges to 0 in expectation.

(b) if θ ∈ ( 12 , 1) and η−, η+ ∈
(
0, 2k

Ln

)
, then it holds that

{∑∞
s=t ∥xs+1 − xs∥2

}
t
converges to 0 at

rate O
(
t

1
1−2θ

)
in expectation.

Proof. Note that {∥∇f(xt)∥}t is absolutely bounded due to boundedness of {xt}t and continuity
of ∇f(x). By Theorems 2 and 1 it holds that

EVt

[
∥∇̂fVt

(xt)∥2
]
≤ ∥EVt

[
∇̂fVt

(xt)
]
∥2 +

(n
k
− 1
)
∥∇f(xt)∥2

+
4Lδ√
3

(
n2

k
− n

)
∥∇f(xt)∥+

4L2n2δ2

3k
≤ n

k
∥∇f(xt)∥2 + Cδt.

Thus it holds that

k

n

(
ηt −

Lη2t n

2k

)
Et

[
∥∇̂fδt

Vt
(xt)∥2

]
≤
(
ηt −

Lη2t n

2k

)
∥∇f(xt)∥2 + Cδt

≤ f(xt)− Et [f(xt+1)] + Cδt,

where the second inequality uses (6).
Since xt+1 = xt − ηt∇̂fδt

Vt
(xt), the above inequality implies that,

k

n

(
1

ηt
− Ln

2k

)
Et

[
∥xt+1 − xt∥2

]
≤ f(xt)− Et [f(xt+1)] + Cδt. (16)

Taking total expectation on both sides of the above inequality gives

k

n

(
1

ηt
− Ln

2k

)
E
[
∥xs+1 − xs∥2

]
≤ E [f(xt)− f(x∞)]− E [f(xt+1)− f(x∞)] + Cδt.

Since {xt}t converges almost surely and ηt ∈ [η−, η+], summing up the above inequality gives

k

n

(
1

η+
− Ln

2k

)
E

[ ∞∑
s=t

∥xs+1 − xs∥2
]
≤ E [f(xt)− f(x∞)] + Cδt, ∀t ≥ T0.

Since we have proved the convergence rate for {E [f(xt)− f(x∞)]}t, we can conclude the proof
by the result of Theorem 3.

Next we provide convergence rate guarantee for {∥xt − x∞∥}t in Theorem 5.

Theorem 5. Instate Assumption 1. Let xt be a sequence generated by the SZGD algorithm, and
let x∞ be the almost sure limit of {xt}t. Pick step sizes ηt so that there exist η−, η+ ∈ (0,∞) such
that η− ≤ ηt ≤ η+ for all t. Then it holds that

(a) if θ ∈ (0, 1
2 ], −1 ≤

(
Lnη2

−
2k − η−

)
< 0 and −1 ≤

(
Lnη2

+

2k − η+

)
< 0, there exists a constant

Q > 1 such that {Qt∥xt − x∞∥}t converges to 0 in expectation.
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(b) if θ ∈ ( 12 , 1) and η−, η+ ∈
(
0, 2k

Ln

)
, then it holds that {∥xt − x∞∥}t converges to 0 at rate

O
(
t

1−θ
1−2θ

)
in expectation.

Proof. In [1], Attouch and Bolte uses properties of the function x 7→ −x1−θ (x > 0, θ ∈ (0, 1))
to study the convergence of {∥xt − x∞∥}t. Here we follow a similar path, but in a probabilistic
manner. By convexity of the function x 7→ −x1−θ (x > 0, θ ∈ (0, 1)), it holds that

z1−θ
2 − z1−θ

1 ≥ (1− θ)z−θ
2 (z2 − z1), ∀z1, z2 > 0, θ ∈ (0, 1). (17)

By letting z1 = f(xt+1)− f(x∞) and z2 = f(xt)− f(x∞), we have

(f(xt)− f(x∞))1−θ − (f(xt+1)− f(x∞))θ ≥ (1− θ)(f(xt)− f(x∞))−θ (f(xt)− f(xt+1)) .

Taking conditional expectation (conditioning on Ft) on both sides of the above equation gives

(f(xt)− f(x∞))1−θ − Et

[
(f(xt+1)− f(x∞))1−θ

]
≥ (1− θ)(f(xt)− f(x∞))−θ (f(xt)− Et [f(xt+1)])

≥ (1− θ)(f(xt)− f(x∞))−θ

(
k

n

(
1

ηt
− Ln

2k

)
Et

[
∥xt+1 − xt∥2

]
− Cδt

)
, (18)

where the last line uses (16).
Also, it holds that, for sufficiently large t,

0 < (f(xt)− f(x∞))θ
1○
≤
√

∥∇f(xt)∥
2○
≤
(∥∥∥∥Et

[
∇̂fδt

Vt
(xt)

]
+O

(
nδt
n+ 1

1

)∥∥∥∥)1/2

≤
(∥∥∥Et

[
∇̂fδt

Vt
(xt)

]∥∥∥+ Cδt

)1/2
=

(
1

ηt
∥Et [xt+1 − xt] ∥+ Cδt

)1/2

≤
√

1

ηt
Et [∥xt+1 − xt∥2] +

√
Cδt, (19)

where 1○ uses Proposition 2, and 2○ uses Theorem 1.
Combining the above result with (18) gives

(f(xt)− f(x∞))1−θ − Et

[
(f(xt+1)− f(x∞))1−θ

]
≥

(1− θ)
(

k
n

(
1− Lnηt

2k

)√
ηtEt

[
∥xt+1 − xt∥2

]
− Cδt

)
√
Et [∥xt+1 − xt∥2] +

√
Cδt

= (1− θ)
k

n

(
1− Lnηt

2k

)
√
ηt

Et

[
∥xt+1 − xt∥2

]
− Cδt√

Et [∥xt+1 − xt∥2] +
√
Cδt

. (20)

For sufficiently large t such that Cδt < 1, we have

√
Et [∥xt+1 − xt∥2]− (Cδt)

1/2 ≤
Et

[
∥xt+1 − xt∥2

]
− Cδt√

Et [∥xt+1 − xt∥2] +
√
Cδt

≤
n
√
ηt

(1− θ)k
(
1− Lnηt

2k

) ((f(xt)− f(x∞))1−θ − Et

[
(f(xt+1)− f(x∞))1−θ

])
where the last inequality uses (20).

Combining Jensen’s inequality and the above inequality gives

Et [∥xt+1 − xt∥]− (Cδt)
1/2 ≤

√
Et [∥xt+1 − xt∥2]− (Cδt)

1/2

≤
n
√
ηt

(1− θ)k
(
1− Lnηt

2k

) ((f(xt)− f(x∞))1−θ − Et

[
(f(xt+1)− f(x∞))1−θ

])
.
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Taking total expectation on both sides of the above inequality and summing over times gives

∞∑
s=t

E [∥xs+1 − xs∥] ≤
n
√
ηt

(1− θ)k
(
1− Lnηt

2k

)E [(f(xt)− f(x∞))1−θ
]
+ C

∞∑
s=t

δ1/2s

=
n
√
ηt

(1− θ)k
(
1− Lnηt

2k

)E [(f(xt)− f(x∞))1−θ
]
+ Cδ

1/2
t

Since ∥xt − x∞∥ ≤
∑∞

s=t ∥xs+1 − xs∥, the above implies that

E [∥xt − x∞∥] ≤
n
√
ηt

(1− θ)k
(
1− Lnηt

2k

)E [(f(xt)− f(x∞))1−θ
]
+ Cδ

1/2
t

≤
n
√
ηt

(1− θ)k
(
1− Lnηt

2k

)E [f(xt)− f(x∞)]
1−θ

+ Cδ
1/2
t ,

where the last inequality uses Jensen’s inequality. We can conclude the proof by the result of
Theorem 3.

4.4 Implications on Gradient Descent
The convergence rate for SZGD implies sure convergence rate of the gradient descent algorithm.
In this section, we will display convergence rate results for the gradient descent algorithm on
Łojasiewicz functions. Note that the classic work [1] provides convergence rate for the proximal
algorithm, not the gradient descent algorithm. Also [14] provides analysis for the gradient descent
on the Polyak–Łojasiewicz functions, not the Łojasiewicz functions. Thus this convergence rate of
{f(xt)}t governed by gradient descent for smooth Łojasiewicz functions is one of our contributions,
although it may not be as important as the results in previous sections.

Recall the gradient descent algorithm iterates as

xt+1 = xt − ηt∇f(xt). (Gradient Descent (GD))

Compare to GD, the SZGD algorithm does not require one to have access to first-order information
of the objective. In this sense, SZGD algorithm makes weaker assumptions about the environment.

Corollary 1. Instate Assumption 1. Let xt be a sequence generated by the gradient descent
algorithm, and let x∞ be the limit of {xt}t. Suppose there exists η−, η+ ∈ (0,∞) such that η− ≤
ηt ≤ η+ for all t. Then if θ ∈ (0, 1

2 ], −1 ≤
(

Lη2
−

2 − η−

)
< 0 and −1 ≤

(
Lη2

+

2 − η+

)
< 0, there exists

a constant Q > 1 such that {Qt∥xt − x∞∥}t converges to 0 and {Qt (f(xt)− f(x∞))}t converges
to 0.

Corollary 1 follows immediately from Theorems 3 and 5. If θ ∈ (0, 1
2 ], Corollary 1 provides linear

convergence rate of {∥xt − x∞∥}t and {f(xt) − f(x∞)}t with xt governed by the GD algorithm.
When θ ∈ (0, 1

2 ], linear convergence rate for {
∑∞

s=t ∥xs+1 − xs∥}t can be similarly obtained.
If θ ∈ ( 12 , 1), then the deterministic case (GD) converges faster than the stochastic case (SZGD),

as shown in Theorem 6. To prove Theorem 6, we first need the following proposition.

Proposition 4. Instate Assumption 1. Let {xt}t∈N be the sequence governed by the gradient
descent algorithm. Pick step sizes ηt so that there exist η−, η+ ∈ (0,∞) such that η− ≤ ηt ≤ η+
for all t. Let {xt}t∈N be bounded and let x∞ be the limit of {xt}t∈N. Then there exist constants
C0 and T0 such that the following holds:

(i) f(xt)− f(x∞) ∈
(
0,
(

1
2θB

) 1
2θ−1

)
for all t ≥ T0.

(ii) −C2θ
0 B + C0

2θ−1 ≤ 0, where B is defined in (5).
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(iii) f(xT0
)− f(x∞) ≤ C0T

1
1−2θ

0 .

Proof. Since f is L-smooth, it holds that

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

L

2
∥xt − xt+1∥2

≤ f(xt)−B∥∇f(xt)∥2,

where B is defined in (5).
Therefore, limt→∞ ∥∇f(xt)∥ = 0. Otherwise, the above inequality leads to a contradiction to

that infx f(x) > −∞. By Lemma 2, we know that {xt}t converges to a critical point of f . Thus
by continuity of f , item (i) can be satisfied since {f(xt)}t converges. Item (ii) can be satisfied by
picking some C0 > 1. Since {f(xt)}t is bounded, we can pick C0 large enough so that item (iii) is
satisfied.

With the above proposition, we are ready to prove Theorem 6.

Theorem 6. Instate Assumption 1. Let xt be a sequence generated by the gradient descent algo-
rithm, and let x∞ be the limit of {xt}t. Pick step sizes ηt so that there exist η−, η+ ∈ (0,∞) such
that η− ≤ ηt ≤ η+ for all t. If θ ∈ ( 12 , 1), then f(xt)− f(x∞) ≤ O

(
t

1
1−2θ

)
.

Proof. Let T0 and C0 be the constants so that Proposition 4 holds true.
By L-smoothness by f , it holds that

f(xt+1) ≤ f(xt) +∇f(xt)
⊤ (xt+1 − xt) +

L

2
∥xt − xt+1∥2

= f(xt) +

(
Lη2t
2

− ηt

)
∥∇f(xt)∥2.

Since xt is close to a critical point for all t ≥ T0 (item (i) in Proposition 4), combining the
above inequality and the Łojasiewicz inequality gives

f(xt+1)− f(x∞) ≤ f(xt)− f(x∞) +

(
Lη2t
2

− ηt

)
(f(xt)− f(x∞))2θ (21)

≤ f(xt)− f(x∞)−B(f(xt)− f(x∞))2θ,

where B is defined in (5).
For a given t ≥ T0, consider the function h(x) = (t + x)

1
1−2θ . Applying Taylor’s theorem to h

gives (t+ 1)
1

1−2θ = t
1

1−2θ + 1
1−2θ (t+ z)

2θ
1−2θ for some z ∈ [0, 1], which implies

(t+ 1)
1

1−2θ ≥ t
1

1−2θ +
1

1− 2θ
t

2θ
1−2θ . (22)

We will use induction to finish the proof. Item (iii) in Proposition 4 states f(xT0
)− f(x∞) ≤

C0T0
1

1−2θ . Inductively, if f(xt)− f(x∞) ≤ C0t
1

1−2θ (t ≥ T0), then (21) implies that

f(xt+1)− f(x∞) ≤ C0t
1

1−2θ −BC2θ
0 t

2θ
1−2θ

≤ C0(t+ 1)
1

1−2θ −BC2θ
0 t

2θ
1−2θ +

C0

2θ − 1
t

2θ
1−2θ ≤ C0(t+ 1)

1
1−2θ ,

where the first line uses (21), the induction hypothesis, item (i) in Proposition 4, and that the
function x 7→ x−Bx2θ is strictly increasing on

(
0,
(

1
2θB

) 1
2θ−1

)
, the second line uses (22), and the

last line uses item (ii) in Proposition 4.
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5 The Proximal Algorithm for Nonsmooth Łojasiewicz Func-
tions

Let f be a function that is continuous but possibly nonsmooth. In such cases, we use the (sub-
gradient) proximal algorithm to solve this optimization problem. This section serves to provide
a convergence rate analysis for the proximal algorithm for nonsmooth Łojasiewicz functions with
exponent θ ∈ (0, 1

2 ). Previously, [1] showed that, when the Łojasiewicz exponent θ ∈ ( 12 , 1), the

sequence {xt} governed by the proximal algorithm (23) converges at rate ∥xt − x∞∥ ≤ O
(
t

1−θ
1−2θ

)
.

In this section, we show that the proximal algorithm satisfies f(xt) ≤ O
(
t

1
1−2θ

)
. When θ ∈ ( 12 , 1)

the function value {f(xt)}t tends to converge at a faster rate than the point sequence {∥xt−x∞∥}t.
This phenomenon for the proximal algorithm again suggests that the convergence rate of {f(xt)}t
may be more important and informative than the convergence rate of {∥xt − x∞∥}t, since the
trajectory of {xt}t may be inevitably spiral [9].

5.1 Preliminaries for Nonsmooth Analysis and Proximal Algorithm
Before proceeding, we first review some preliminaries for nonsmooth analysis and the proximal
algorithm. We begin by the concept of subdifferential and subgradient in nonsmooth analysis.

Definition 3 ([31]). Consider a proper lower semicontinuous function f : Rn → R ∪ {+∞}. The
effective domain (or simply domain) of f (written domf) is domf := {x ∈ Rn : −∞ < f(x) <

+∞}. For each x ∈ domf , the Fréchet subdifferential of f at x, written ∂̂f(x), is the set of vectors
g∗ ∈ Rn such that

lim inf
y ̸=x
y→x

f(y)− f(x)− ⟨g∗,y − x⟩
∥x− y∥

≥ 0.

If x /∈ domf , by convention ∂̂f(x) = ∅.
The limiting subdifferential of f at x, written ∂f(x), is

∂f(x) := {g ∈ Rn : ∃xn → x, f(xn) → f(x),g∗
n ∈ ∂̂f(xn) → g}.

An element g ∈ ∂f(x) is call a subgradient of f at x.

Next we review the elements of the proximal algorithm. The proximal algorithm is described
by the following inclusion recursion:

xt+1 ∈ argmin
z

{
f(z) +

1

2ηt
∥z− xt∥2

}
, (23)

with a given x0 ∈ Rn.
In each iteration, the proximal algorithm solves an optimization problem whose solution set

is compact and nonempty [1]. By the optimality condition (Theorem 10.1, [31]), we know 0 ∈
∂
(
f(xt+1) +

1
2ηt

∥xt+1 − xt∥2
)
. By the subadditivity property of subdifferential (e.g., Exercise

10.10, [31]), we have

0 ∈ ∂

(
f(xt+1) +

1

2ηt
∥xt+1 − xt∥2

)
⊆ {1

η
(xt+1 − xt)}+ ∂f(xt+1),

where + is the Minkowski sum when two summands are sets. Thus it holds that

xt+1 = xt − ηtgt+1,

for some gt+1 ∈ ∂f(xt+1).
We also need the following two theorems.
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Theorem 7 ([1]). Let f satisfy Assumption 2 and let {xt}t∈N be generated by the proximal algo-
rithm. If {xt}t∈N is bounded then it converges to a critical point of f .

Theorem 8 ([1]). Let f satisfy Assumption 2 and let {xt}t∈N be generated by the proximal algo-
rithm. Let f satisfy the Łojasiewicz inequality with Łojasiewicz exponent θ ∈ ( 12 , 1). If {xt}t∈N is
bounded, then it holds that

∥xt − x∞∥ ≤ O(t
2θ

1−2θ ) and ∥xt − xt+1∥ ≤ O(t
2θ

1−2θ ),

where x∞ is the limit of {xt}t.

Same as [1], we will make the following assumptions on f . Note that all items in Assumption
2 are assumed in [1].

Assumption 2 ([1]). The function f satisfies

1. f is continuous on domf ;

2. For any x∗ ∈ Rn with ∂f ∋ 0, it holds that: there exists κ, µ > 0, and θ ∈ [0, 1), such that

|f(x)− f(x∗)|θ ≤ κ∥g∥, ∀x ∈ B(x∗, µ),∀g ∈ ∂f(x), (24)

where B(x∗, µ) is the ball of radius µ centered at x∗. Without loss of generality, we let κ = 1
to avoid clutter.

3. infx∈Rn f(x) > −∞;

4. Let {xt}t be the sequence generated by the GD algorithm. We assume {xt}t is bounded.

5. There exists η−, η+ ∈ (0,∞) such that η− ≤ ηt ≤ η+ for all t.

In the above assumption, (24) is the Łojasiewicz inequality. Compared to the one in Definition
2, gradient is replaced by subgradient.

5.2 Convergence of the Proximal Algorithm
Similar to the stochastic case, we focus on the convergence analysis for {f(xt)}t. We start with
the following proposition.

Proposition 5. Let {xt}t∈N be the bounded sequence generated by the proximal algorithm. Then
there exists a sequence {wt}t ⊆ [0,∞) such that

• lim
t→∞

wt

∥xt−xt+1∥ = 0;

• f(xt) ≥ f(xt+1) + g⊤
t+1 (xt − xt+1)− wt, ∀t ∈ N.

Proof. By Definition 3, we have

f(xt)− f(xt+1)− ⟨gt+1,xt − xt+1⟩ ≥ −o (∥xt − xt+1∥) , ∀t,

which concludes the proof.

Next, we state below some numerical properties when t is large.

Proposition 6. For any θ ∈ ( 12 , 1), there exists constants T0 and C0 such that

(i) 2
η−

≤ (2θ − 1)C2θ−1
0 ;

(ii) For all t ≥ T0, it holds that ∥xt − x∞∥ ≤ µ, where µ is defined as in Definition 2.
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(iii) For all t ≥ T0, it holds that

C0

(2θ − 1)
t

2θ
1−2θ + wt ≤ η−C

2θ
0 (t+ 1)

2θ
1−2θ ≤ ηtC

2θ
0 (t+ 1)

2θ
1−2θ ,

where wt is a sequence satisfying Proposition 5.

(iv) f(xT0
)− f(x∞) ≤ C0T

1
1−2θ

0 .

Proof. Clearly we can find a constant C ′
0 such that 2η+ ≤ (2θ − 1)C2θ−1 for all C ≥ C ′

0, and this
C ′

0 does not depend on T0. Thus item (i) can be easily satisfied. By Theorem 7, we can find T0

so that item (ii) is true. By Theorem 8, we have ∥xt − xt+1∥ ≤ O
(
t

2θ
1−2θ

)
and thus Proposition 5

gives

lim
t→∞

wtt
2θ

2θ−1 = 0. (25)

By item (i) and (25), for any C ≥ C ′
0, it holds that lim

t→∞

C
2θ−1 t

2θ
1−2θ +wt

η−C2θ(t+1)
2θ

1−2θ
=

C
η−(2θ−1)

C2θ ≤ 1
2 . Thus

we can find T0 and C ′
0 that satisfies item (iii). For item (iv), given a T0, we can find C ′′

0 such that

f(xT0
) ≤ C ′′

0 T
1

1−2θ

0 , since the sequence {f(xt)}t∈N is absolutely bounded (Theorem 7). Letting
C0 = max{C ′

0, C
′′
0 } concludes the proof.

Theorem 9. Instate Assumption 2. Let {xt}t∈N generated by the proximal algorithm. If {xt}t∈N
is bounded then it converges to a critical point of f . Let x∞ be the limit of {xt}t∈N. If θ ∈ ( 12 , 1),

then it holds that f(xt)− f(x∞) ≤ O
(
t

1
1−2θ

)
.

Proof. Let {wt}t be a sequence satisfying Proposition 5. Thus we have

f(xt) ≥ f(xt+1) + g⊤
t+1 (xt − xt+1)− wt = f(xt+1) + ηt∥gt+1∥2 − wt.

Since {xt} converges (Theorem 7) and the Łojasiewicz inequality holds with exponent θ, there
exists T0, such that for all t ≥ T0,

f(xt) ≥ f(xt+1) + ηt∥gt+1∥2 − wt ≥ f(xt+1) + ηt (f(xt+1)− f(x∞))
2θ − wt,

which gives

f(xt)− f(x∞) ≥ f(xt+1)− f(x∞) + ηt (f(xt+1)− f(x∞))
2θ − wt. (26)

For any positive integer t, define h(s) = (t + s)
1

1−2θ . By mean value theorem, one has h(1) =
h(0) + h′(z) for some z ∈ [0, 1]. Thus we have

(t+ 1)
1

1−2θ = t
1

1−2θ +
1

1− 2θ
(t+ z)

2θ
1−2θ ≥ t

1
1−2θ +

1

1− 2θ
t

2θ
1−2θ . (27)

Next we use induction to prove the convergence rate. By item (iv) in Proposition 6, we can

find C0 and T0 such that f(xT0) − f(x∞) ≤ C0T
1

1−2θ

0 . Inductively, if f(xt) − f(x∞) ≤ C0t
1

1−2θ

(t ≥ T0), then by (26) it holds that

f(xt+1)− f(x∞) + ηt(f(xt+1)− f(x∞))2θ ≤ f(xt)− f(x∞) + wt

≤ C0t
1

1−2θ + wt ≤ C0(t+ 1)
1

1−2θ + C0
1

2θ − 1
t

2θ
1−2θ + wt

≤ C0(t+ 1)
1

1−2θ + ηtC
2θ
0 (t+ 1)

2θ
1−2θ , (28)

where the second last inequality uses (27) and the last inequality uses (iii) in Proposition 6.
Since the function x 7→ x + ηtx

2θ is monotonic and strictly increasing on (0,∞), the above
inequality (28) implies f(xt+1)− f(x∞) ≤ C0(t+ 1)

1
1−2θ , which concludes the proof.
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6 Empirical Studies
In this section, we empirically study the performance of the SZGD algorithm. All experiments are
carried out on the following test functions F1 and F2 defined over R30

F1(x) =
(
x⊤Qx

)3/4
and F2(x) =

(
x⊤Qx

)1/4
,

where Q ∈ R30×30 is a PSD matrix with eigenvalues following exponential distribution with
p.d.f. fexp(x) =

1
5 exp

(
−x

5

)
I[x≥0] and eigenvectors independently sampled from the unit sphere.

The results are summarized in Figures 1 and 2. To avoid numerical instability, we set δt =
max (0.1× 2−t, 0.00001) in all numerical experiments.

Remark 2. In this experiments, we compare the results of SZGD with GD. Strictly speaking, this is
not a fair comparison since SZGD uses only zeroth-order information while GD can use first-order
information.

At first glance, Figure 1d and 1e show seemingly implausible results. However, these results
are natural after we investigate the landscape of the test function F2. While fully visualizing F2

is impossible, we can consider a 1-d version of F2: f(x) =
√
|x|, whose graph is shown below in

Figure 1a. Note that f(x) =
√

|x| is indeed a 1-d version of F2, since f(x) =
√
|x| = (x2)1/4. This

nonconvex function has the following properties, all highly aligned with empirical observations.

• When x is far from the origin, the function’s surface is flat. In this case, randomness in the
gradient, which may increase the magnitude of gradient, can speedup the convergence. In Figure
1d, we observe that SZGD algorithms converge faster than GD at the beginning, which agrees
with the landscape of F2.

• At zero, the function is not differentiable, and thus not L-smooth. This means that the gradient
estimator may not be accurate near zero. In Figure 1d, we observe that GD converges to a more
optimal value at the end, which agrees with the non-differentiability of F2 at zero.

• Near zero, the gradient of the function is not continuous. Therefore, the trajectory of the GD
algorithm oscillates near zero. For the 1-d example in Figure 1a, the trajectory of GD will jump
back and forth around zero, but hits zero with little chance. In Figure 1d, we observe that the
∥x∥ value of DG is fuzzy as it goes to zero, which agrees with the shape of F2 near zero.

Other observations from Figure 1 are summarized below:

• Figure 1b and 1c show that, on test function F1, with fixed step size η, SZGD with larger values
of k in general converges faster given a fixed number of iterations. However, the gap between
different choices of k is not significant.

• In general, {f(xt)}t converges faster than {∥xt−x∞∥}t, which agrees with our theoretical results.

We also empirically study the convergence rates versus the number of function evaluations.
Note that one iteration may require more than one function evaluations: k random orthogonal
directions are sampled and 2k function evaluations are needed to obtain the gradient estimator
defined in (3). The convergence results versus number of function evaluations are shown in Figure
2. Some observations from Figure 2 include

• Given the same learning rate ηt = η and the same number of function evaluations, in terms of
function evaluations, the sequence {f(xt)}t converges faster when k is smaller.

• Given the same learning rate ηt = η and the same number of function evaluations, the sequence
{∥xt − x∞∥}t converges fastest when k = 10 or k = 1 for both F1 and F2. This is an intriguing
observation, and suggests that there might be some fundamental relation between number of
function evaluations needed and convergence of {∥xt − x∞∥}t.

• When measured against number of function evaluations, {f(xt)}t converges faster than {∥xt −
x∞∥}t. This is similar to the observations in Figure 1.
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(a) (b) (c)

(d) (e)

Figure 1: Subfigure (a) plots the function f(x) =
√
|x|. Subfigures (b) and (c) (resp. (d) and (e))

plot results of SZGD and GD on test function F1 (resp. F2). The lines labeled with k = 1 (resp.
k = 10, etc.) show results of SZGD with k = 1 (resp. k = 10, etc.). The line labeled GD plots
results of the gradient descent algorithm. For all experiments, the step size ηt is set to 0.005 for
all t. Subfigures (b) and (d) show observed convergence rate results for {∥xt − x∞∥}t (x∞ = 0);
Subfigure (c) (resp. (e)) shows observed convergence rate results for {∥F1(xt)− F1(x∞)∥}t (resp.
{∥F2(xt)−F2(x∞)∥}t). The solid lines show average results over 10 runs. The shaded areas below
and above the solid lines indicate 1 standard deviation around the average. Since the starting
point x0 is random, the trajectory of GD is also random.

(a) (b) (c) (d)

Figure 2: Results of SZGD and GD on test functions F1 (subfigures (a) and (b)) and F2 (subfigures
(c) and (d)). The solid lines show average results over 10 runs. The lines labeled with k = 1 (resp.
k = 10, etc.) show results of SZGD with k = 1 (resp. k = 10, etc.). Subfigures (a) and (c)
show observed convergence rate results for {∥xt − x∞∥}t (x∞ = 0); Subfigures (b) and (d) show
observed convergence rate results for {∥F2(xt) − F2(x∞)∥}t (F2(x∞) = 0). The step size η is set
to 0.005. The shaded areas below and above the solid lines indicate 1 standard deviation around
the average. Unlike Figure 1, this figure plots errors (either ∥xt − x∞∥ or f(xt)− f(x∞)) against
number of function evaluations. For example, when k = 10, one iteration requires 10 × 2 = 20
functions evaluations.
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7 Proof of Theorem 2
To start with, we need the following facts in Propositions 7 and 8.

Proposition 7 ([7]). Let V := [v1,v2, · · · ,vk] ∈ Rn×k be uniformly sampled from the Stiefel
manifold St(n, k). Then the marginal distribution for any vi is uniform over the unit sphere Sn−1.

In words, the uniform measure over the Stiefel manifold St(n, k) can be decomposed into a
wedge product of the spherical measure over Sn−1 and the uniform measure over St(n− 1, k − 1)
[7]. Another useful fact is the following proposition.

Proposition 8. Let v be a vector uniformly randomly sampled from the unit sphere Sn−1. Then
it holds that E

[
vv⊤] = 1

nI, where I ∈ Rn×n is the identity matrix.

Proof. Let vi be the i-th entry of v. For any a ∈ [−1, 1] and i ̸= j, it holds that E [vivj ] =
E [vi|vj = a] = 0. Thus E [vivj ] = 0 for i ̸= j. Also, it holds that 1 = E

[
∥v∥2

]
=
∑n

i=1 E
[
v2i
]
,

which concludes the proof since E
[
v2i
]
= E

[
v2j
]

for any i, j = 1, 2, · · · , n (by symmetry).

Proof of Theorem 2. Since f(x) is L-smooth (∇f(x) is L-Lipschitz), ∇2f(x) (the weak total deriva-
tive of ∇f(x)) is integrable. Let v ∈ Rn be an arbitrary unit vector. When restricted to any line
along direction v ∈ Rn, it holds that v⊤∇2f(x)v (the weak derivative of v⊤∇(x) along direction
v) has bounded L∞-norm. This is due to the fact that Lipschitz functions on any closed inteval
[a, b] forms the Sobolev space W 1,∞[a, b].

Next we look at the variance bound for the estimator. Without loss of generality, we let x = 0.
Bounds for other values of x can be similarly obtained.

Taylor’s expansion of f with integral form gives

f(δvi) = f(0) + δv⊤
i ∇f(0) +

∫ δ

0

(δ − t)v⊤
i ∇2f(tvi)vi dt

Thus for any vi ∈ Sn−1 and small δ,

1

2

(
f(δvi)− f(−δvi)

)
= δv⊤

i ∇f(0) +
1

2

∫ δ

0

(δ − t)v⊤
i ∇2f(tvi)vi dt−

1

2

∫ −δ

0

(−δ − t)v⊤
i ∇2f(tvi)vi dt.

For simplicity, let Ri =
∫ δ

0
(δ − t)v⊤

i ∇2f(tvi)vi dt −
∫ −δ

0
(−δ − t)v⊤

i ∇2f(tvi)vi dt, and Cauchy–
Schwarz inequality gives

|Ri| ≤
1

2

(∫ δ

0

(δ − t)2 dt

)1/2(∫ δ

0

(
v⊤
i ∇2f(tvi)vi

)2
dt

)1/2

+
1

2

(∫ 0

−δ

(−δ − t)2 dt

)1/2(∫ 0

−δ

(
v⊤
i ∇2f(tvi)vi

)2
dt

)1/2

≤ 2L√
3
δ2

for all i = 1, 2, · · · , k. For any i, k, n, it holds that

E

[∥∥∥∥12 (f(δvi)− f(−δvi))vi

∥∥∥∥2
]
−

∥∥∥∥∥E
[√

k

2
(f(δvi)− f(−δvi))vi

]∥∥∥∥∥
2

= E
[∥∥(δv⊤

i ∇f(0) +Ri

)
vi

∥∥2]− k
∥∥E [(δv⊤

i ∇f(0) +Ri

)
vi

]∥∥2
1○
= E

[
δ2∇f(0)⊤viv

⊤
i ∇f(0) + 2δ∇f(0)⊤viRi +R2

i

]
− k

∥∥E [δviv
⊤
i ∇f(0) +Rivi

]∥∥2 .
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Since E
[
viv

⊤
i

]
= 1

nI (Propositions 7 and 8), 1○ gives

E

[∥∥∥∥12 (f(δvi)− f(−δvi))vi

∥∥∥∥2
]
−

∥∥∥∥∥E
[√

k

2
(f(δvi)− f(−δvi))vi

]∥∥∥∥∥
2

=
δ2

n
∥∇f(0)∥2 + 2δ∇f(0)⊤E [Rivi] + E

[
R2

i

]
− k

∥∥∥∥E [ δn∇f(0) +Rivi

]∥∥∥∥2
=

(
δ2

n
− δ2k

n2

)
∥∇f(0)∥2 +

(
2δ − 2δk

n

)
∇f(0)⊤E [Rivi] + E

[
R2

i

]
− k ∥E [Rivi]∥2

2○
≤
(
δ2

n
− δ2k

n2

)
∥∇f(0)∥2 + 4Lδ3√

3

(
1− k

n

)
∥∇f(0)∥+ 4L2δ4

3
.

For the variance of the gradient estimator, we have

E
[∥∥∥∇̂fδ

k (0)− E
[
∇̂fδ

k (0)
]∥∥∥2]

= E
[∥∥∥∇̂fδ

k (0)
∥∥∥2]− ∥∥∥E [∇̂fδ

k (0)
]∥∥∥2

= E

∥∥∥∥∥ n

2δk

k∑
i=1

(f(δvi)− f(δvi))vi

∥∥∥∥∥
2
−

∥∥∥∥∥ n

2δk

k∑
i=1

E [(f(δvi)− f(−δvi))vi]

∥∥∥∥∥
2

3○
=

n2

δ2k2

k∑
i=1

E

[∥∥∥∥12 (f(δvi)− f(δvi))vi

∥∥∥∥2
]

− n2

4δ2k2

k∑
i,j=1

E [(f(δvi)− f(−δvi))vi]
⊤ E [(f(δvj)− f(−δvj))vj ] ,

where the last equation follows from the orthonormality of {v1,v2. · · · ,vk}. By Proposition 7, we
know that E [(f(δvi)− f(−δvi)) vi] = E [(f(δvj)− f(−δvj))vj ] for all i, j = 1, 2, · · · , k. Thus 3○
gives

E
[∥∥∥∇̂fδ

k (0)− E
[
∇̂fδ

k (0)
]∥∥∥2]

4○
=

n2

δ2k2

k∑
i=1

E

[∥∥∥∥12 (f(δvi)− f(−δvi)) vi

∥∥∥∥2
]
−

∥∥∥∥∥E
[√

k

2
(f(δvi)− f(−δvi)) vi

]∥∥∥∥∥
2
 .

Combining 2○ and 4○ gives

E
[∥∥∥∇̂fδ

k (0)− E
[
∇̂fδ

k (0)
]∥∥∥2]

=
n2

δ2k2

k∑
i=1

E

[∥∥∥∥12 (f(δvi)− f(δvi)) vi

∥∥∥∥2
]
−

∥∥∥∥∥E
[√

k

2
(f(δvi)− f(−δvi)) vi

]∥∥∥∥∥
2


≤
(n
k
− 1
)
∥∇f(0)∥2 + 4Lδ√

3

(
n2

k
− n

)
∥∇f(0)∥+ 4L2n2δ2

3k
.

8 Conclusion
This paper studies the SZGD algorithm and its performance on Łojasiewicz functions. In partic-
ular, we establish convergence rates for SZGD algorithms on Łojasiewicz functions. Our results
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show that access to noiseless zeroth-order oracle is sufficient for optimizing Łojasiewicz functions.
We show that SZGD exhibits convergence behavior similar to its non-stochastic counterpart. Our
results suggests {f(xt)}t tend to converge faster than {∥xt−x∞∥}t. We also observe some intrigu-
ing facts in the empirical studies. In particular, there might be an optimal choice of k for SZGD
to achieve a good convergence rate for {∥xt − x∞∥}t.
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