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Abstract

A proportionally fair allocation aims to distribute resources, where each individual is given
a share according to that individual’s utility for that resource (e.g., need, request, yield, etc.)
so that the overall utility is proportionally maximized. In this paper, we seek to find a pro-
portionally fair allocation under noisy bandit feedback. We introduce two new algorithms for
this problem: Algorithm Fairly-Greedy, which uses a simple greedy allocation, and Algorithm
Proportional Catch-Up, which allocates resources whose arms have not been pulled enough
relative to their utilities. We show that the allocation learned by our algorithms is close to
the optimal allocation with high probability. We apply our algorithms to synthetic data and
real data, and show that they outperform existing methods in tasks of proportionally-fair
allocation.

1 Introduction
Resource allocation (of goods, of services) is a central problem in many areas of society: social
services need to be allocated to those who need them, computer servers need to schedule jobs
efficiently, and budgets of organizations need to be allocated effectively. In this paper, we study
an important bandit resource allocation problem that occurs often in practice. In this new set-
ting, new resources become available over time, and our goal is to allocate them proportionally
fairly, where proportional fairness means that no alternative allocation can increase the overall
proportionally-weighted utility (Kelly et al., 1998). The learning environment consists of K in-
dividuals and T units of resource that become available one at a time. The task of an agent is
to distribute the resource fairly to the K individuals, where the utility of the resource to each
of the individuals is unknown (to be learned). At each time, the agent needs to give one unit of
resource to one of the K individuals. After giving out a unit of resource to individual i, the agent
can observe the response from i, which reflects the utility of the resource to the individual. Once
a unit of resource is given to an individual, it can never be taken back.

This model is a viable abstraction for many real-world scenarios, which are highly related to
recommender systems. Examples include:

1) Advertising: Under budget constraints, a college training program wants to allocate its
available ads among a distribution of individuals with different age demographics, based on how
valuable it estimates the ad to be to these groups. The college training program estimates that
the ad might appeal most to 17-25 year-olds, less so to 26-40 year-olds, and other groups even less
so. One demographic group i would initially be allocated some ads, and from there, the college
receives feedback at time t consisting of successes (e.g., training program enrollment increases) or
indicators (e.g., click rate) of the strength of the ad Yt,i. An algorithm then adjusts the allocation
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of ads for the next time period, and continues allocating proportional to the estimated values of
the ads for the various age groups.

2) Community resource distribution: A city is allocating resources to its various community
training programs. µ is how many job training resources each community training program needs
in order to successfully provide their community with jobs, which is not known in advance. Each
community i is allocated some job training resources at time t, and from there, we receive feedback
Yt,i which could be determiners or indicators of job success, such as the counts of individuals who
are now employed after training, or their wage increase, or test scores. After this feedback, we
continue allocating resources proportionally to the needs of the community training programs.

3) Server job scheduling. A server is serving requests from K clients, and can serve only
one client at a time. Each client has a different resource consumption rate that is not known in
advance. The server need to allocate the computing resources to the K clients so that the total
throughput is maximized.

The general problem discussed above seems to naturally fit into the framework of multi-armed
bandits because it has information revealed over time; however, typical bandit algorithms aim
to minimize regret, which means they typically aim to balance exploration and exploitation to
find a single best arm that yields the maximum reward. In this proportional fairness setting,
we do not aim to find a single arm. The goal instead is to create an allocation over all K arms
that maximizes proportional fairness. This distinction is important, as it means that no classical
bandit algorithms apply to this setting. In this work, we propose novel bandit algorithms for
learning these allocations. The algorithms directly allocates resources according to an estimate
of each individual’s utility, which is gathered over time.

An interesting aspect of our analysis involves the reward function. In particular, the objective
of proportional fairness ensures a “diminishing returns” property, namely that the marginal gain of
one individual repeatedly receiving resources is decreasing. Intuitively, this submodular objective
is aligned with fairness: it ensures that resources will be more evenly distributed. In the analysis,
we use this property of the proportional fairness objective to obtain an approximation-rate type
result. Specifically, we show that with high probability, the utility of the allocation learned by
simple algorithms at step T is within O( 1√

T
) of the optimal proportionally-fair utility.

Related Works
Our paper is related to previous works on proportional fairness. One major motivation for pro-
portional fairness originated from job scheduling in computer clusters (Kelly et al., 1998). Since
then, a line of work has studied the properties of proportional fairness (Kushner and Whiting,
2004; Bonald et al., 2006). Specifically, Bonald et al. (2006) studied game theoretical properties
of proportional fairness. Kushner and Whiting (2004) also proposed an algorithm for finding pro-
portionally fair allocations for divisible resources. Their paper uses a discretized ODE algorithm
for learning the proportional fair allocations, whereas we use a greedy approach or a proportional
catch-up method for proportionally fair allocation learning under bandit feedback. Additionally,
the result in our work is stronger in the sense that a finite time analysis is given, whereas the
analysis of Kushner and Whiting (2004) gives only an asymptotic guarantee. In the machine
learning community, many authors have studied fairness from different angles (Kearns and Roth,
2019; Tsamados et al., 2021). For instance, Agarwal et al. (2019) studied fair regression, Krish-
naswamy et al. (2021) studied fair classification and Chen et al. (2019) studied proportionally fair
clustering. However, none of the above works solve the problem of learning proportionally fair
allocations under bandit feedback.

Another line of related work comes from the multi-armed bandit problem. Bandit problems
date back to at least Thompson (1933), and have been studied by many authors. One of the the
most popular approaches to the stochastic bandit problem is the Upper Confidence Bound (UCB)
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algorithms (Robbins, 1952; Lai and Robbins, 1985; Auer, 2002), which has various extensions
(Srinivas et al., 2010; Abbasi-Yadkori et al., 2011; Agrawal and Goyal, 2012; Bubeck and Slivkins,
2012; Seldin and Slivkins, 2014). Specifically, some work uses KL-divergence to construct the
confidence bound (Lai and Robbins, 1985; Garivier and Cappé, 2011; Maillard et al., 2011), or
include variance estimates within the confidence bound (Audibert et al., 2009; Auer and Ortner,
2010). The UCB algorithm and its variations are also used in other settings, including the
contextual bandit setting (e.g., Li et al., 2010; Krause and Ong, 2011; Slivkins, 2014), and the
stochastic combinatorial bandit setting (Chen et al., 2013, 2016). Parallel to the stochastic setting,
studies on the adversarial bandit problem form another line of literature. Since randomized
weighted majorities (Littlestone and Warmuth, 1994), exponential weights remains a top strategy
for adversarial bandits (Auer et al., 1995; Cesa-Bianchi et al., 1997; Auer et al., 2002). The
exponential weights method is a special of the Follow-The-Regularized Leader (FTRL) or mirror
descent with the Shannon’s entropy as its regularizer (Shalev-Shwartz et al., 2011). Recently,
Zimmert and Seldin (2021); Zimmert et al. (2019) show that the FTRL framework solves both
the stochastic and adversarial setting optimally.

Recently, there has been an increasing trend in studying multi-armed bandit learning problems
with fairness considerations. Joseph et al. (2016) was among the first who considered fairness in
multi-armed bandits and introduced the Knows What It Knows model. Several authors have also
studied multi-armed bandits with fairness considerations, including Patil et al. (2020), where a
notion of fairness tolerance is used as a fairness metric, and (Li et al., 2019), where fairness is
included into consideration for combinatorial bandits.

Perhaps the most related works are the ones by Talebi and Proutiere (2018) and Wang et al.
(2021), where proportional fairness has been considered. In (Talebi and Proutiere, 2018; Wang
et al., 2021), exploration methods such as Upper Confidence Bound and/or Thompson Sam-
pling are used to solve such problems. In this paper, unlike the previous work by Wang et al.
(2021), we show that, in the vanilla proportional fairness setting with unknown utilities Kelly
et al. (1998), UCB-type exploration-exploitation balancing is not necessary. More specifically,
neither Fairly-Greedy or Proportional Catch-Up performs exploration-exploration balancing. Yet
they both achieve the optimal O(

√
T ) regret rate (Singh and Joachims, 2018). In addition, as

shown by empirical studies, both Fairly-Greedy and Proportional Catch-Up can outperform UCB-
type algorithms (Singh and Joachims, 2018; Wang et al., 2021), in the task of learning vanilla
proportional fair allocations.

2 Background and Setting
The goal is to learn an allocation, which is a distribution of resources among individuals. Let there
be T unit of a (divisible) resource and K individuals. An allocation is a vector (x1, x2, · · · , xK)

so that xi ≥ 0 and
∑K

i=1 xi = T . In the past, variance allocation schemes have been studied
(e.g., Brandt et al., 2016). Among them, the concept of proportionally fair allocation comes from
game theory for job scheduling, where the original motivation is to efficiently allocate computing
resources according to the priority of jobs, and at the same time, ensure that no job is starving
(e.g., Kushner and Whiting, 2004). The formal definition is stated in Definition 1.

Definition 1. Let µi ∈ (0, 1] be the utility for individual i. An allocation x∗ = (x∗
1, x

∗
2, · · · , x∗

K)
(with

∑
i x

∗
i = T ) is called proportionally fair if, for any x′ = (x′

1, x
′
2, · · · , x′

K) (with
∑

i x
′
i = T ),∑

i

µi
x′
i − x∗

i

x∗
i

≤ 0. (1)

Intuitively, an allocation is proportionally fair if no alternative allocation can increase the
proportionally weighted overall utility. If individual i is given many resources in the optimal
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allocation (i.e., x∗
i is large), changing the amount of resources given to i would not affect the

weighted sum in (1) very much. On the contrary, if individual i is given few resources in the
optimal allocation (i.e., x∗

i is small), changing the amount of resources given to i would drastically
affect the weighted sum in (1).

An allocation that satisfies the fairness property in (1) is the one where each individual gets
a share proportional to their utility (x∗

i ∝ µi); such allocation is proportionally fair. This phe-
nomenon is found in Proposition 1. Proposition 1 is an established result from the classic study
of allocation theory, and a proof is provided for completeness.

Proposition 1. The allocation where x∗
i = Tµi∑

j µj
solves

max
xi,i∈[K]

∑
i

µi log xi, subject to
∑
i

xi = T, (2)

and this allocation is proportionally fair, meaning that it satisfies (1). In particular, this optimal
allocation satisfies

x∗
i

x∗
j

=
µi

µj
. (3)

Proof of Proposition 1. Let λ ≥ 0 be the Lagrangian multiplier for the optimization problem in
(2). The resulting convex problem is

min
λ,xi,i∈[K]

−
∑
i

µi log xi + λ

(∑
i

xi − T

)
.

First order stationary condition gives µi

x∗
i
= λ and

∑
i x

∗
i = T . This gives x∗

i = Tµi∑
j µj

, which is a
solution that satisfies all constraints and KKT conditions. In addition, we can verify that for any
other allocation (x′

1, x
′
2, · · · , x′

K) with
∑

i x
′
i = T ,

∑
i

µi

(
x′
i

x∗
i

− 1

)
=
∑
i

µi

(
x′
i

∑
j µj

Tµi
− 1

)
= 0,

which means this allocation is proportionally fair.

In other words, the solution to (2) satisfies (1). This proposition allows us to transform the
constraint satisfaction problem in (1) to the optimization problem in (2). Due to concavity of (2),
the problem is usually simplified after this transformation.

From the expression (2), it holds that giving more resources to rich individuals generates less
marginal gain, which justifies the fairness from another perspective. In addition to justifying that
an allocation satisfying (1) is indeed fair in a proportional sense, this proposition also suggests
a concise and concrete objective for learning proportionally fair allocation, that is, to maximize
the objective in Eq. (2). For indivisible resources, xi needs to take integer values. In such cases,
we would use the best integer-valued solution for (2) to define a proportionally fair allocation for
indivisible goods.

Bandit Learning for Proportionally Fair Allocations Problem Setting
With the concepts of proportional fairness in mind, we now describe a bandit learning protocol
for proportionally-fair resource distribution. Henceforth, we will use terminology from the multi-
armed bandit literature unless otherwise noted. As an example, when we say “pull arm i,” this is
equivalent to “allocate a unit of resource to individual i.”
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There are K arms (individuals) in the environment, each having their own reward (utility)
distribution that is unknown and supported on (0, 1]. The learning process repeats for T rounds,
where at each round, the agent needs to pull an arm (allocate a unit of resource). After arm
i is played, a reward sample of arm i is revealed, and the agent proceeds to the next round.
Formally, in round t, the agent plays arm jt ∈ [K], and observes yjt,t, where yjt,t is a sample of
Yjt,t ∈ (0, 1] and E[Yi,t] = µi for all i ∈ [K] and t ∈ [T ]. This feedback structure is typical for
multi-armed bandit problems. Unlike traditional multi-armed bandit tasks, the goal here is to
learn a proportionally fair allocation (Definition 1), instead of minimizing regret.

3 Algorithms
By Proposition 1, we can maximize

∑
j µi log xi for the purpose of learning a proportionally fair

allocation. In this bandit learning environment, we do not know µi and need to play an arm at
each round. Therefore, the first step is to estimate µi. We use nt,i =

∑t
s=1 I[js=i] to denote the

number of times i is played up to time t. The estimator for µi (at time t) is defined, as usual, as
µ̂t,i =

∑t
s=1 yjs,sI[js=i]

nt,i
.

At time t, the current allocation is (nt,1, nt,2, · · · , nt,K), and the corresponding estimated
objective value that we are maximizing is∑

i

µ̂t,i log nt,i. (4)

A natural strategy is to play an arm to greedily increment (4). More specifically, we play jt
such that

jt ∈ argmax
j

∑
i

µ̂t−1,i log

(
nt−1,i + I[j=i]

nt−1,i

)
. (5)

This natural and simple strategy is summarized in Algorithm 1, which we call the Fairly-
Greedy Algorithm.

Algorithm 1 Fairly-Greedy

1: Input: Time horizon (total unit of resources): T .
2: Initialization: Play each arm once and initialize n0,i and µ̂0,i.
3: for t = 1, 2, . . . , T do
4: Play jt as defined in (5).
5: Observe yjt,t and update nt,i and µ̂t,i accordingly.
6: end for

Another strategy is to ensure that the allocation received by an individual is always approxi-
mately proportional to its estimated utility. This strategy follows the intuition from Proposition
1. If we find that an arm has not been pulled enough relative to its estimated reward, we pull
it. This algorithm is called Proportional Catch-Up, since it “plays catch-up” with arms that have
fallen behind in their pulls, so that ns,i

ns,j
≈ µ̂s,i

µ̂s,j
for all s, i, j. Here we use ns,i

ns,j
≈ µ̂s,i

µ̂s,j
to denote

that
(

ns,i

ns,j
− µ̂s,i

µ̂s,j

)(
ns,i+1
ns,j

− µ̂s,i

µ̂s,j

)
≤ 0 or

(
ns,i

ns,j
− µ̂s,i

µ̂s,j

)(
ns,i−1
ns,j

− µ̂s,i

µ̂s,j

)
≤ 0.

4 Analysis
In this section, we provide analysis for Algorithms 1 and 2. The analysis for Algorithms 1 uses the
submodular property of the objective in (2), and the analysis for Algorithm 2 uses the observation
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Algorithm 2 Proportional Catch-Up

1: Input: Time horizon (total unit of resources): T .
2: Initialization: Play each arm once and initialize n0,i and µ̂0,i.
3: Initialize loop counter s = 1.
4: repeat
5: With probability ϵs = s−1/4, play an arm uniformly at random, and skip line 6. Otherwise,

execute line 6.
6: Play arms so that ns,i

ns,j
≈ µ̂s,i

µ̂s,j
, for all i, j ∈ [K].

/* For implementation, one can use the for-loop in Algorithm 3 to approximate this step. */
7: Increase counter s = s+ 1, and update the estimators for µi for all i.
8: until All T units of resources are exhausted.

Algorithm 3

1: for (i, j) ∈ [K]× [K] and i ̸= j do
2: If nt,i

nt,j
>

µ̂t,i

µ̂t,j
, play jt = j. Otherwise, play jt = i.

3: end for

that the optimal proportionally-fair allocation satisfies (3).

4.1 Analysis for Fairly-Greedy
To state results in the language of greedy algorithms, we first discuss functions defined over
multi-sets. For items (arms) [K], let N[K] denote all multi-sets defined over [K]. Any A ∈ N[K]

can be represented by a tuple A = (nA
1 , n

A
2 , · · · , nA

K), where nA
i ∈ N denotes the number of

repetitions of item i in A. For any A,B ∈ N[K], we write A ⊆ B (A belongs to B) if nA
i ≤ nB

i

for all i ∈ [K]. For any A ∈ N[K], we define the union operation between multi-set A and
a singleton as A ∪ {i} := (nA

1 , n
A
2 , · · · , nA

i + 1, · · · , nA
K). The cardinality of a multi-set A is

defined as |A| =
∑K

i=1 n
A
i . For any multi-set A and B, the multi-set complement is defined as

A \ B =
(
max{0, nA

1 − nB
1 },max{0, nA

2 − nB
2 }, · · · ,max{0, nA

K − nB
K}
)
, and the multi-set union

is defined as A ∪ B =
(
max{nA

1 , n
B
1 },max{nA

2 , n
B
2 }, · · · ,max{nA

K , nB
K}
)
. Note that the union

between two multi-sets and the union between a multi-set and a singleton are different, and
the ∪ notation is overloaded. For a multi-set A = (nA

1 , · · · , nA
K), we use

∑
i∈A to denote the

summation over all j ∈ [K] such that each j is repeated for nA
j times. In other words, we

define
∑

i∈A f(i) =
∑K

k=1

∑nA
k

ik=1 f(ik) for any function f defined over [K]. With these multi-set
notations, we say function f : N[K] → R is:

• increasing if f(S ∪ {i}) ≥ f(S) for any S ∈ N[K] and i ∈ [K],

• and submodular if f(X ∪ {x}) − f(X) ≥ f(Z ∪ {x}) − f(Z) for any X ⊆ Z ∈ N[K] and
x ∈ [K].

With these notions of increasing and submodular functions for multi-sets, we proceed to present
the theoretical guarantees.

Proposition 2. If the rewards are supported on [c, 1] (c ∈ (0, 1)), then it holds that nt,i ≥
ct

4(K−1)+c for all i ∈ [K] and all t ∈ N>0.

That is, every arm has a guarantee on how often it is pulled, which relates directly to our goal
of fair allocation of arm pulls.
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Proof. Suppose nt,j

nt,i
> 4

c for some t and i, j. Then:

c [log(nt,i + 1)− log nt,i]
1○
≥ c

nt,i
− c

2n2
t,i

2○
≥ c

2nt,i

3○
>

1

nt,j

4○
≥ log(nt,j + 1)− log nt,j (6)

which 1○ uses log(1 + x) ≥ x − x2

2 for x ≥ 0, 2○ uses that c
2n2

t,i
≤ c

2nt,i
for all nt,i ≥ 1, 3○ uses

that nt,j

nt,i
> 2

c , 4○ uses x ≥ log(1 + x) for x ∈ R. Since the rewards are supported on [c, 1], the
empirical means µ̂t,i are also supported on [c, 1]. Thus from (6), it holds that

µ̂t,i [log(nt,i + 1)− log nt,i]

≥ c [log(nt,i + 1)− log nt,i] (Since µ̂t,i ≥ c)
≥ log(nt,j + 1)− log nt,j (by Eq. 6)
≥ µ̂t,j [log(nt,j + 1)− log nt,j ] . (Since µ̂t,j ≤ 1)

This implies that j will be played instead of i whenever nt,i

nt,j
> 2

c , and thus nt,i

nt,j
will decrease

(since nt,j is in the denominator) until nt,i

nt,j
≤ 2

c , and thus can never exceed 4
c (since the ratio

nt,i

nt,j
can never double when the numerator is incremented by 1). Therefore nt,i

nt,j
≤ 4

c for all t, i, j.

Since
∑K

j=1 nt,j = t for any t, we have, for any i
′
:

t =

K∑
i=1

nt,i ≤ nt,i′ +
∑
j ̸=i′

4

c
nt,i′

=

(
4(K − 1)

c
+ 1

)
nt,i′ , ∀i′ ∈ [K],

which means nt,i′ ≥ ct
4(K−1)+c for all i

′ ∈ [K]. Since we chose i
′

arbitrarily, we have that
nt,i ≥ ct

4(K−1)+c for all i.

From now on, we use the following notation. For a multi-set S, let ni(S) =
∑

x∈S I[x=i]

be the number of occurrences of i in S. The function f is defined as, unless otherwise noted,
f(S) =

∑
i∈[K] µi log (ni(S)). Also, define f̂t(S) =

∑
i∈[K] µ̂t,i log (ni(S)). With this f and f̂t,

define fS(i) = f(S ∪ {i})− f(S) and f̂S,t(i) = f̂t(S ∪ {i})− f̂t(S). Also, we use St to denote the
multi-set of allocation learned at time t. In other words, St = (nt,1, nt,2, · · · , nt,K). We start with
the following proposition (e.g., Bach et al., 2013), which is a standard property for submodularity.

Proposition 3. If f is monotone (increasing) and submodular,

f(V ) ≤ f(S) +
∑

x∈V \S

fS(x) for all S, V ∈ N[K].

This proposition is a multi-set version of the basic property for submodular set functions. The
proof is that if f is monotone increasing, then f(V ) ≤ f(S ∪ V ). If f is also submodular, then
f(V ) ≤ f(S ∪ V ) ≤ f(S) +

∑
x∈V \S fS(x) .

Recall that in this setting, even if we knew the true values of the µ’s, the best possible solution
would not choose the same arm each time because its rewards would decay eventually, and another
arm would be better at that point.

Below in Lemma 1, we show that the utility of the learned allocation f(St) is close to that of
the optimal allocation.
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Lemma 1. For any δ ∈ (0, 1) and any T > 0, with probability at least 1−δ, Algorithm 1 satisfies,
for all t ∈ [T ],

f(S∗) ≤ f(St) + |S∗ \ St|

(
µjt +

√
log(2TK/δ)

nt,jt

)
log

(
1 +

1

nt,jt

)
+

∑
i∈S∗\St

√
2 log (2KT/δ)

nt,i
log

(
1 +

1

ni(St)

)
,

where St is the multi-set of the allocation at time t, and jt is the arm played at time t.

Proof. By Hoeffding’s inequality and a union bound over K and T , we have, for any δ ∈ (0, 1),

P

(
|µi − µ̂t,i| ≥

√
log (2KT/δ)

nt,i
, ∀i ∈ [K], t ∈ [T ]

)
≤ δ. (7)

Consequently, since f(St) =
∑K

i=1 µi log nt,i and f̂(St) =
∑K

i=1 µ̂t,i log nt,i and
∣∣∣f̂(St)− f(St)

∣∣∣ ≤∑K
i=1 |µi − µ̂t,i| log nt,i, it holds that with probability exceeding 1− δ,

∣∣∣f(St)−f̂(St)
∣∣∣≤ K∑

i=1

√
log(2KT/δ)

nt,i
log nt,i,∀t∈[T ]. (8)

Let jt be the t-th arm played, and let St = {j1, j2, · · · , jt} be the first t arms played. We have,
by setting V = S∗ and S = St in Proposition 3,

f(S∗) ≤ f(St) +
∑

i∈S∗\St

fSt(i). (9)

From the definition of fSt and (7), with probability at least 1− δ, it holds that

fSt(i) = µi log (ni(St) + 1)− µi log (ni(St))

= µi log

(
1 +

1

ni(St)

)
≤

(
µ̂t,i +

√
log (2KT/δ)

nt,i

)
log

(
1 +

1

ni(St)

)
(by Eq. 7)

≤ µ̂t,i log

(
1 +

1

ni(St)

)
+

√
log (2KT/δ)

nt,i
log

(
1 +

1

ni(St)

)

= f̂St,t (i) +

√
log (2KT/δ)

nt,i
log

(
1 +

1

ni(St)

)
. (10)

Combining (9) and (10), we have, with probability at least 1− δ,

f (S∗) ≤ f(St) +
∑

i∈S∗\St

fSt(i) (by Eq. 9)

≤ f(St) +
∑

i∈S∗\St

f̂St,t (i) +
∑

i∈S∗\St

√
log (2KT/δ)

nt,i
log

(
1 +

1

ni(St)

)
. (11)
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Since jt ∈ argmaxi∈[K]

{
f̂t (St ∪ {i})− f̂t (St)

}
, it holds that with probability exceeding 1−δ,

for any i ∈ [K] and t,

f̂St,t (i) ≤ f̂t (St ∪ {jt})− f̂t (St) (12)
= µ̂t,jt (log (nt,jt + 1)− log(nt,jt))

≤

(
µjt +

√
log(2TK/δ)

nt,jt

)
log

(
1 +

1

nt,jt

)
, (13)

where (12) uses the greedy nature of the algorithm. We have now bounded each term by an upper
bound on its largest value. Plugging (13) into (11) gives that

f(S∗) ≤ f(St) +
∑

i∈S∗\St

(
µjt +

√
log(2TK/δ)

nt,jt

)
log

(
1 +

1

nt,jt

)
+

∑
i∈S∗\St

√
log (2KT/δ)

nt,i
log

(
1 +

1

ni(St)

)

≤ f(St) + |S∗ \ St|

(
µjt +

√
log(2TK/δ)

nt,jt

)
log

(
1 +

1

nt,jt

)
+

∑
i∈S∗\St

√
log (2KT/δ)

nt,i
log

(
1 +

1

ni(St)

)
,

which concludes the proof.

Next we give a bound on |S∗ \ ST | in Proposition 4.

Proposition 4. With probability exceeding 1− δ, it holds that

|S∗ \ ST | ≤ K

√
(4(K − 1) + c)T log(2TK/δ)

c
+O(1).

Proof. When t is large, we have n−1
t,i = O(t−1) for all i (Proposition 2). Thus the increment ratio

f̂St (i)

f̂St (j)
can be written out as

f̂St(i)

f̂St
(j)

=
µ̂t,i log

(
1 + 1

nt,i

)
µ̂t,j log

(
1 + 1

nt,j

) =
µ̂t,i

(
1

nt,i
+O(t−2)

)
µ̂t,j

(
1

nt,j
+O(t−2)

) =
µ̂t,i

(
1

nt,i

)
µ̂t,j

(
1

nt,j

) +O(t−2) =
µ̂t,i

µ̂t,j

nt,j

nt,i
+O(t−2).

(14)

Suppose there exists (i, j) such that nt,i

nt,j
̸≈ µ̂t,i

µ̂t,j
+Ω(t−1) for large t; i.e., (I) nt,i

nt,j
>

µ̂t,i

µ̂t,j
+Ω(t−1) or

(II) nt,i

nt,j
<

µ̂t,i

µ̂t,j
−Ω(t−1). Since Ω(t−1) > O(t−2), we have f̂St(i) < f̂St(j) if (I) and f̂St(i) < f̂St(j)

if (II). This means j will be played before i if (I) and i will be played before j if (II), which implies
that

nt,i

nt,j
=

µ̂t,i

µ̂t,j
+O(t−1).

Since nT,i ≥ cT
4(K−1)+c for all i, with probability exceeding 1− δ, we have

µi +

√
log(2TK/δ)

cT
4(K−1)+c∑

j

(
µj +

√
log(2TK/δ)

cT
4(K−1)+c

) ≤
µi −

√
log(2TK/δ)

nT,i∑
j

(
µj +

√
log(2TK/δ)

nT,j

) ≤ µ̂t,i∑
j µ̂t,j

≤
µi +

√
log(2TK/δ)

nT,i∑
j

(
µj −

√
log(2TK/δ)

nT,j

) ≤
µi +

√
log(2TK/δ)

cT
4(K−1)+c∑

j

(
µj −

√
log(2TK/δ)

cT
4(K−1)+c

) .
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By Taylor’s theorem, it holds that

µi∑
j µj

−K

√
log(2TK/δ)

cT
4(K−1)+c

+O(T−1) ≤ µ̂t,i∑
j µ̂t,j

≤ µi∑
j µj

+K

√
log(2TK/δ)

cT
4(K−1)+c

+O(T−1). (15)

Thus it holds that

|S∗ \ ST | ≤
∑
j

|nj(S
∗)− nT,j | ≤

∑
j

∣∣∣∣ µj∑
i µi

− µ̂t,j∑
i µ̂t,i

∣∣∣∣T +O(1) ≤ K

√
(4(K − 1) + c)T log(2TK/δ)

c
+O(1),

where the last inequality uses (15).

Next in Theorem 1, we present a theoretical guarantee for Algorithm 1, which shows that the
allocation learned at time T is close to the optimal allocation at time T .

Theorem 1. Assume that the rewards are supported on [c, 1]. Let S∗ be the multi-set correspond-
ing to the optimal allocation for T pulls. For any δ ∈ (0, 1), with probability at least 1 − δ, the
allocation found by Algorithm 1 satisfies

f(ST ) ≥ f(S∗)−O

(√
K5

c3T
log(KT/δ)

)
.

Proof of Theorem 1. This Theorem follows from Propositions 2 and 4, and Lemma 1. Combining
the above results gives, with probability exceeding 1− δ,

f(S∗) ≤ f(ST ) + |S∗ \ ST |

(
µjT +

√
log(2TK/δ)

nT,jT

)
log

(
1 +

1

nT,jT

)
+

∑
i∈S∗\ST

√
2 log (2KT/δ)

nT,i
log

(
1 +

1

ni(ST )

)
(i)

≤ f(ST ) + |S∗ \ ST |

(
1 +

√
log(2TK/δ)

nT,jT

)
1

nT,jT

+
∑

i∈S∗\ST

√
2 log (2KT/δ)

nT,i

1

nT,jT

(ii)

≤ f(ST ) + |S∗ \ ST |

(
1 +

√
log(2TK/δ)

cT
4(K−1)+c

)
1
cT

4(K−1)+c

+ |S∗ \ ST |
√

2 log (2KT/δ)
cT

4(K−1)+c

1
cT

4(K−1)+c

where (i) uses that log(1+x) ≤ x and (ii) uses Proposition 2. Combining the above computations
with Proposition 4 gives

f(ST ) ≥ f(S∗)−O

(√
K5

c3T
log(KT/δ)

)
.

4.2 Analysis for Proportional Catch-Up
We present a theoretical guarantee for the Proportional Catch-Up algorithm in Theorem 2. The
result in Theorem 2 is stronger in the sense that the rewards do not need to be strictly larger
than c.
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(a) Ghana (b) Kenya (c) Tanzania

(d) Zambia (e) Zimbabwe

Figure 1: Resource allocation learned by different algorithms. Each subfigure plots the resources
allocated to one country by the algorithms over the years 1965-2019. The line plot labelled oracle
plots the allocation proportional to the average infant mortality rate. The line plots of both Fairly
Greedy (Alg1) and Proportional Catch-Up (Alg2) are highly aligned with the oracle line. These
plots illustrate how the allocations by Fairly Greedy (Alg1) and Proportional Catch-Up progress
over time.
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Country Fairly-Greedy Prop. Catch-Up Average Mortality Rate
per 10K live newborn

Ghana 12.68 12.94 12.483175
Kenya 10.2 10.19 9.969955

Tanzania 13.98 13.77 13.902460
Zambia 13.18 13.3 13.571910

Zimbabwe 8.96 9.8 9.072500
Cosine

Similarity 0.9998 0.9995

Table 1: The first two columns show the allocations learned by Algorithm 1 (Fairly-Greedy)
and Algorithm 2 (Proportional Catch-Up). The last column is the average infants’ mortality
rate over the years 1966-2019. The bottom row of the table is the cosine similarity between
the corresponding allocation and the average infants’ mortality rate (the last column). In the
experiments, an independent Gaussian noise sampled from N (0, 10) is added to each observation.
Entry table entry (except for the last row and last column) averages over 100 runs. This table
shows that Fairly Greedy and Proportional Catch-Up can quickly find an allocation proportional
to the average need, which is modelled by the infants’ mortality rate in this case.

Theorem 2. Let δ be an arbitrary number in (0, 1), and let t be sufficiently large so that t3/4

K −√
2t log(2Kt/δ) ≥ 2t1/2 log (2Kt/δ). With probability at least 1− π2δ

3 (δ > 0), for any i, j ∈ [K],
the allocation learned by Algorithm 2 satisfies, for any i, j ∈ [K],

µt,i − t−1/4

µt,j + t−1/4
≲

nt,i

nt,j
≲

µt,i + t−1/4

µt,j − t−1/4
, i, j ∈ [K],

where the ≲ sign denotes the ≤ relation or the ≈ relation.

Proof. Consider the events

E1 =

{
nt,i ≥

t3/4

K
−
√
2t log(2Kt/δ),∀i ∈ [K], t ∈ N

}
,

and

E2 =

{
|µ̂t,i − µi| ≤

√
2 log (2Kt/δ)

nt,i
,∀i ∈ [K], t ∈ N

}
.

By the Azuma-Hoeffding inequality and a union bound, we know that event E1 and E2 simul-
taneously hold with probability exceeding 1− π2δ

3 .
We now proceed with the assumption that the high probability event E1∩E2 holds true. When t

is large enough so that t3/4

K −
√
2t log(2Kt/δ) ≥ 2t1/2 log (2Kt/δ), we have nt,i ≥ 2t1/2 log (2Kt/δ),

and thus

|µ̂t,i − µi| ≤ t−1/4. (16)

By algorithm design, we have

nt,i

nt,j
≈ µ̂t,i

µ̂t,j
, ∀i, j ∈ [K].
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Thus we have

µt,i − t−1/4

µt,j + t−1/4
≲

nt,i

nt,j
≲

µt,i + t−1/4

µt,j − t−1/4
, i, j ∈ [K],

where the ≲ sign denotes ≤ or ≈.

5 Experiments

5.1 Comparison to Other Methods
We compare our methods with the following algorithms: (i) the UCB-prop Singh and Joachims
(2018); Wang et al. (2021) algorithm, and (ii) the TS-prop (TS for Thompson Sampling) algorithm
(Wang et al., 2021). The UCB-prop (Singh and Joachims, 2018; Wang et al., 2021) algorithm
plays a arm jt at time t according to the following rule

jt ∈ argmax
j

∑
i

(
µ̂t−1,i +

√
log(4t)

nt−1,i

)
log

(
1 +

I[j=i]

nt−1,i

)
. (17)

In other words, it replaces the µ̂t,i in the Fairly-Greedy rule (5) with an upper confidence bound.
Similarly, the TS-prop algorithm replaces the µ̂t,i in (5) with a sample from the posterior distri-
bution for µi.

The algorithms (Fairly-Greedy, Proportional Catch-Up, UCB-prop, TS-prop) are all compared
with the standard UCB algorithm and the standard Thompson Sampling algorithm for complete-
ness. For both TS-prop and standard Thompson Sampling, the Gaussian model is assumed for
each µi, and a standard Gaussian prior is used. Via comparing with (i) and (ii), we show that
confidence-based exploration is may not be necessary for proportional allocation problems, be-
cause arms will be explored anyway based on fairness criteria. Via comparing with (iii) and
(iv), the experiments show that, as a sanity check, traditional bandit algorithms cannot solve
proportional allocation problems.

The results are summarized in Figure 2.

5.2 Real Data Applications
We apply the algorithm to the World Bank’s infant mortality rate dataset (World Bank, 2021),
which contains data from 1960 to 2019 for over 200 countries. To use our algorithms on this
dataset, we assume that a larger infant mortality rate calls for more medical resources. We select
five countries in Africa that are demographically and geographically close. They are Ghana,
Kenya, Tanzania, Zambia, and Zimbabwe. The task is to porportionally fairly distribute medical
care resources according to infant mortality rate among these countries. The resource distribution
protocol proceeds as follows. In each year, we need to distribute one unit of resource to one of
the five countries. Once a unit of resource is given to a country, it can never be taken back. In a
bandit learning model, we assume that only the feedback from the country that receives resource
is revealed. To measure performance, the learned allocation for a country is compared to the
country’s average mortality rate over years 1961-2019. In the first five years (1961-1965), each
country receives one unit of resource as warm-up. The result is summarized in Table 1. As shown
in the table, both Fairly-Greedy and Proportional Catch-Up find proportionally fair allocations
fairly quickly.

We also visualize the learned allocations and the average need (the moving average of infants’
mortality rate) over the years. This result is shown in Figure 1.
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Figure 2: Plots of the cosine similarity between the learned allocations and the true optimal
allocation. The left sub-figure shows results for K = 10 and T = 1000. The right sub-figure
shows results for K = 50 and T = 5000. For each sub-figure, the corresponding parameter setting
is repeated 100 times. Each violin plot summarized the distribution of the results from the 100
repetitions, where the horizontal bars enclosing the shaded area are the maximum and minimum
values from the runs.

6 Discussion: Continuous-time Stochastic Decision Making
In Proportional Catch-up, each time a unit of resource is allocated to an arm. This decision
making process is stochastic, meaning that each time one random arm is selected. The study
of the bandit fair allocation algorithms, especially Proportional Catch-up, naturally leads to an
important question in stochastic decision making — What if the decision frequency is so high
that the a continuous-time model is more appropriate for describing such processes. Naturally,
one would expect that the continuous-time process converges to a Wiener process, since Brownian
motion is so ubiquitous in the physical world.

The Wiener process can be constructed from symmetric simple random walks. Consider the
stochastic process Xt = 1√

k+1

∑t
k=0 ξk, where ξs are i.i.d. the Rademacher random variables.

Between two times t and s (t > s), the process Xt experiences (t−s) i.i.d. normalized increments:
Xt −Xs = 1√

t−s

∑t
k=s+1 ξk. If the process Xt moves more frequently so that there are m(t− s)

i.i.d. normalized increments between t and s, then we have Xt − Xs = 1
m

√
t−s

∑mt
k=m(s+1) ξk.

By the central limit theorem, as m approaches infinity, Xt − Xs converges in distribution to a
Gaussian N(0, t − s), for any t > s ≥ 0. In more modern terms, the Wiener process is governed
by the probability law of Wiener measure on continuous functions.

However, the Wiener process, or more precisely multi-dimensional Wiener process, fails to
fully capture the stochastic decision making process in bandit learning. The reason is as follows.
The decisions in bandit learning are vertices of the (d − 1)-simplex. Consider the stochastic
process Xt = 1√

m(t+1)

∑mt
k=0 ∆

d
k, where ∆d

k are i.i.d. random variables from the vertices of the

(centered) simplex. Since the coordinates of ∆d
k are correlated, Xt − Xs will not converge to a

standard multi-dimensional Gaussian distribution as m goes to infinity. A clear understanding of
Xt (defined with ∆d

k) is a profound mathematical problem (Klartag, 2007).
Luckily, we can still study the marginal behavior of Xt. Let ∆d

i,j be the j-th coordinate of ∆d
i .

The distribution of ∆d
i,j is

P
(
∆d

i,j = 1− 1

d

)
=

1

d
and P

(
∆d

i,j = −1

d

)
=

d− 1

d
, ∀i, j.

Now, let us fix a coordinate j and define ξt = d√
m(d−1)(t+1)

∑mt
k=0 ∆

d
k,j , and let m go to infinity,

then the process {ξt}t∈[0,1] converges to the Wiener process for any d. This is a consequence of
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the Donsker’s invariance principle. Note that when d goes to infinity as well, the above assertion
is no longer true. For any k and j, the random variables d√

d−1
∆d

k,j converge to zero in probability
as d goes to infinity. Thus in this case, the limit of ξt becomes trivial.

7 Conclusion
In this paper, we study the problem of finding proportionally fair allocations under bandit feed-
back. We design two new algorithms for this problem, Fairly Greedy and Proportional Catch-Up.
We provide theoretical guarantee for these two algorithms and empirically show that our methods
outperforms existing methods for proportionally fair allocation problems. The Fairly Greedy and
Proportional Catch-Up algorithms are also applied to the infants’ mortality dataset by World
Bank. The results for this real data experiments show that these two algorithms can quickly find
proportionally fair allocations.
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